

Things we might do better together as prompted by the integration of $G\Phi L$ workflows

Rasmus Fogh Global Phasing Ltd, Cambridge

MXCuBE meeting, ALBA 29-30 November 2023

Global Phasing Ltd 2023

Introduction

- (Re)centring and calibration
- Other opportunities

- Make it quick and easy to acquire consistently high-quality data
 - Includes setting the (default) parameter values for you
- Calculation and execution of optimised <u>multi-sweep</u>
 acquisition strategies in real-time
- Uses full range of κ values, setting ω ranges to minimise goniostat shadows
- Bespoke processing that combines sweeps, and corrects for remaining shadows

GΦL

Global Phasing Limited

At a minimum to avoid this

Covid-related deposition (6W9C, 01/04/2020)

- C2, 2.7Å. 57% complete, 2.5 redundancy,
- High background, (40 counts), strong radiation damage.

Reflection I/σ – reciprocal space Red = Unobservable reflections Blue = Missed: not measured but expected to be observable

Global Phasing Limited

GQL workflow actions

Global Phasing Ltd 2023

- Introduction
- (Re)centring and calibration
- Other opportunities

- The first centring is always needed to decide which part of the crystal to use
 - Various automation protocols are in use: tricky job.
- For multi-sweep experiments you need re-centring
- New centrings can be calculated but mechanics of goniostat only allows 7-10µm reproducibility at best.
- Re-centring quicker than first centring, since you can start close, at calculated values

- Centring puts the crystal on the ω axis and in the beam.
- New centring needed when κ and φ change, as κ and φ axes do not go through the crystal position

Global Phasing Limited

 Axis directions and offsets must be known and calibrated – (mis)alignment can change after goniostat head is taken on and off

From Brockhauser et al. (2011) without permission

- EMBL-HH (Gleb Bourenkov, Ivars Karpics) have the MiniKappaCorrection procedure
 - Based on STAC
 - Uses goniostat coordinate system with nominal geometry
 - Has been MXCuBE code since 2015; can be executed automatically on reorientation
 - Still not universally adopted
- $G\Phi L$ has its own system: transcal/diffractcal.
 - Includes calibration for both axis directions and detector geometry
 - Requires $G\Phi L$ release
 - In laboratory coordinate system necessary to calculate and to correct for goniostat shadows
- The two descriptions are mathematically equivalent. One set of translational correction parameters can be calculated from the other axis directions differ.

- The $G\Phi L$ release comes with calibration workflows and analysis procedures
- Calibrating axes and detector plane requires a robust high-quality high-symmetry reference crystal, and a long acquisition and processing
 - Germanate crystals are available (courtesy of Armin Wagner, DLS).
- Translational calibration requires 30-40 centrings on a test object
 - Tungsten pins with ball head are available (courtesy of SOLEIL)
 - With optical image analysis it is possible to do the translational calibration hands-off in a few minutes (Olof Svensson, MASSIF-1)
 - Could we share this implementation in MXCuBE?

50

100

Kappa [deg]

150

200

0

Global Phasing Limited

250

dX dY

dZ

Goniostat shadows

Global Phasing Limited

ω: 30 ° - 360 °

- With high kappa angles and the detector close the goniostat casts shadows on the image
- Expected-but-missing reflections can lead to severe processing problems
- With $G\Phi L$ recentring calculations, SimCal can predict dynamic shadows and autoPROC can mask out the missing reflections (in light blue)

- Could we integrate the application of predicted recentring as standard behaviour for MXCuBE?
- To function reliably, either system requires calibration, which must be kept up to date on the beamline side. This is a matter of synchrotron procedures
- Could we agree on procedures?

- Recentring should be faster than centring, since you start close to the correct centring.
- X-ray recentring you only need a small grid
- Optical recentring ask Martin Savko
- MASSIF-1 use their workflow (MXPress) for X-ray recentring

• Could we agree on a standard interface, so you could use the same calls at any beamline with a bit of configuration?

- Introduction
- (Re)centring and calibration
- Other opportunities

- All parameters should be set automatically
 - in full automation this is required
 - in manual operation to simplify operation (better starting values)
- From current/default values: Image width, exposure time, wavelength, ...
- Calculated: Transmission, dose budget, indexing solutions

- Currently only resolution, centring (and MAD wavelengths) are mandatory
- Could we estimate resolution reliably for each sample?

- Dozor is installed on most beamlines
 - But differently on each?
- $G\Phi L$ thick characterization (5 x 1.2°) should be enough for a reliable resolution estimate
- Could we make a standard DOZOR integration, so that the results (including estimated resolution) could be queried by MXCuBE?

- Detectors must be re-armed between sweeps
 - which takes time and creates a new master file each time
- Multi-trigger mode allows multiple sweeps without re-arming
 - which saves time for (GPL) multi-sweep characterisation, inverse-beam, and wavelength interleaving
- Multi-trigger present at multiple sites
 - but not apparently standardised
- Could we make a standard multi-trigger implementation?

GΦL workflow on MASSIF-1

- The MXCuBE queue can run by itself once loaded
- $G\Phi L$ workflows will work in full automation mode from a single input parameter dictionary
 - The main missing capabilities are resolution and centring (previously addressed)

• Can we (some of us?) collaborate on how to load and schedule the jobs for unattended operation?

Global Phasing Limited

Acknowledgements

- Global Phasing colleagues
 - Peter Keller
 - Rasmus Fogh
 - Wlodek Paciorek
 - Claus Flensburg
 - Clemens Vonrhein
 - Andrew Sharff
 - Ian Tickle
 - Gerard Bricogne
- Diamond Light Source
 - Funding under Collaboration Agreement COL0044 re. I23
 - Armin Wagner, Kamel El Omari
- EMBL-Hamburg / PETRA III
 - Gleb Bourenkov

- Max Planck Institute, Göttingen
 - Ashwin Chari
- ESRF MASSIF-1
 - Marcus Oscarsson, Olof Svensson, Matthew Bowler, Jean-Baptiste Florial
- ALBA synchrotron
 - Roeland Boer, Jordi Andreu
- SOLEIL
 - Martin Savko, Bill Shephard
- MAX IV
 - Jie Nan
- The MXCuBE Collaboration
 - 'All for one and one for all'
- The Global Phasing Consortium
 - Funding, feed-back, and much more