
1

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 2

Introduction to web development

Part 1 - Introduction to JS

Part 2 - Introduction to React

Collaborating since 2005

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 3

Javascript

Javascript is standardised by the ECMAScript standard https://tc39.es/ecma262/

First created by Brendan Eich at Netscape in 1995

Is dynamically and weakly typed language with prototype based object orientation

The runtime is single threaded

https://tc39.es/ecma262/

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 4

Javascript

function factorial(n) {

 if (n === 0 || n === 1) {

 return 1;

 } else {

 return n * factorial(n - 1);

 }

}

class Rectangle {

 constructor (height, width) {

 this.height = height;

 this.width = width;

 }

 // Getter

 get area() {

 return this.calcArea();

 }

 // Method

 calcArea() {

 return this.height * this.width;

 }

}

const square = new Rectangle(10, 10);

console.log(square.area); // 100

Two simple examples

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 5

Javascript explained (simply)

How does this code run ?

Let’s have a look at the runtime environment !

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 6

Overview

Web API’s, provided by Browser, standardised by W3C

Well documented at:
https://developer.mozilla.org/en-US/docs/Web/API

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 7

Javascript explained (simply)

● Fairly simple architecture, heap, call stack and two queues

● For a real deep dive: https://github.com/v8/v8

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 8

Javascript explained (simply)

● Each engine runs in a single thread and has one eventloop (one per origin)

● The browser decides internally which source to pick events from, user input, requests
and so on

● Callback queue is processed when call stack is empty, new tasks executes at next
iteration

● Microtask queue is processed between tasks (but new tasks are executed immediately)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 9

Javascript explained (simply)

Browser provide good tools for debugging and seeing what’s going on

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 10

Javascript explained (simply)

I’m personally using MDN as reference:

https://developer.mozilla.org/en-US/docs/Web/Jav

aScript

If you would like to try example while we are

speaking, you can try on https://playcode.io/javascript

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 11

A few interesting language features

● Weakly typed

● this keyword

● Promises

● Prototypal inheritance

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 12

Weakly typed

Weakly typed

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 13

Weakly typed

Weakly typed, the interpreter makes sometimes difficult (and perhaps
unexpected) decisions regarding types.

This process is referred to as type coercion (implicit type conversion)

For instance:
“mxcube” + 48; // -> “mxcube48”
"b" + "a" + +"a" + "a"; // -> 'baNaNa'
true + true; // -> 2

Luckily the linter will warn us about likely unwanted coercion

Javascript == operator performs coercion while the === (strict equality
does not), always use ===

There is very nice project that goes through details like this:
 https://github.com/denysdovhan/wtfjs#-examples

https://github.com/denysdovhan/wtfjs#-examples

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 14

Weakly typed

This keyword

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 15

This keyword

The value of this is bound at runtime and depends on how a function is
called (not to which object it belongs)

We can override the somewhat odd behaviour of this so that it always
refers to a class instance using the bind method.

You will encounter the bind function in the mxcubeweb code base.

Let’s have a look at an example

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 16

This keyword

import React from "react";

class SimpleExample extends React.Component {

 constructor(props) {

 super(props);

 this.handleClick = this.handleClick.bind(this); // we bind this to SimpleExample

 }

 handleClick(e) {

 console.log(this); // SimpleExample {props: Object, …}

 }

 render() {

 return (

 <div>

 <button onClick={this.handleClick}>Click here</button>

 </div>

);

 }

}

Use bind

Avoid using this outside of classes

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 17

Promises

Promises

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 18

Promises

Provides an abstraction on low level asynchronous code, based on callbacks

A promise is an object returned by an asynchronous function, like a future or greenlet in
Python, it contains the current state of the execution (Pending, Fulfiled, Rejected)

A promise takes two callbacks, a success (resolve) and a failure (rejected) and can be
chained with then

const fetchPromise = fetch("https://mxcube.esrf.fr/);

fetchPromise

 .then((response) => { // Promise call backs are put in the micro task queue

 if (!response.ok) {

 throw new Error(`HTTP error: ${response.status}`);

 }

 return response.json(); // Returns a promise

 })

 .then((data) => {

 console.log(data);

 })

 .catch((error) => {

 console.error(`Could not get mxcube ${error}̀);

 });

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 19

Promises

Today however we can use async and await instead (like in Python), when writing
new code prefer async and await

const fetchPromise = fetch("https://mxcube.esrf.fr/) ;

fetchPromise

 .then((response) => {

 if (!response.ok) {

 throw new Error(`HTTP error: ${response.status}`);

 }

 return response.json();

 })

 .then((data) => {

 console.log(data);

 })

 .catch((error) => {

 console.error(`Could not get mxcube ${error}`);

 });

async function aFetch() {

 try {

 const result = await fetch("https://mxcube.esrf.fr/ ”); // The statements after await are put on the microtask queue

 } catch(error) {

 result = “”;

 console.log(error);

 }

 console.log(result);

}

https://mxcube.esrf.fr/

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 20

Promises

Prototype based inheritance

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 21

Prototypes

You might already have heard about prototype based inheritance, and you will
probably encounter the [[prototype]] or __proto__ attributes when
debugging Javascript code.

It is indeed a bit awkward if one have never seen it before,

Classes define a predefined structure/taxonomy while prototypes define from which
objects to inherit behaviour from via its prototype chain.

An objects prototype can be changed runtime and there is not necessarily well
defined taxonomy.

Javascript has Class based inheritance built on top of the prototype based one.

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 22

Prototypes

We are using classes in mxcubeweb code base so you will encounter them.

React is phasing out the class based components favoring what's called functional
components (more about that later). Axel will make a tutorial about this

Classes are still very useful and we will keep using them for other things

export default class InOutSwitch extends React.Component {

 constructor (props) {

 super(props);

 this.setOff = this.setOff.bind(this);

 this.setOn = this.setOn.bind(this);

 this.onLinkRightClick = this.onLinkRightClick .bind(this);

 this.onOptionsRightClick = this.onOptionsRightClick .bind(this);

}

setOff() {

}

setOn() {

}

render() {

}

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 23

Other often used features

Other often used features

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 24

Other often used features

Import/export statement:

import { objectOne } from "module-name";

It’s possible like in Python to perform * imports and that it should be avoided.

Spread operator (...) - yes three dots :
Allows for collections to be expanded like pythons * and ** operators

const numbers = [1, 2, 3];
console.log(sum(...numbers)); // -> 6

“standard/expected” language constructs for iteration, conditionals and so on.

Oh yes, and the linter does a good job of telling you when you did something you
probably didn't mean to ;)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 25

Part II - Introduction to React

Javascript library for building user interfaces

Created at Meta (Facebook)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 26

Part II - Introduction to React

Provides a framework that make it possible to write interfaces in a
declarative way (without directly interfacing with the DOM)

Done by writing components (widgets) that express what will be
rendered for a certain state

React manages state for components, decides when to render

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 27

Part II - Introduction to React

These three parts, all the libraries and
resources are built into a bundle via a
build chain.

React creates single page interfaces -
the DOM is updated instead of
changing page

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 28

Part II - Introduction to React

You can try this out by typing react.new in your browser

You can use the create-react-app to get the tool chain installed locally
(https://create-react-app.dev/docs/getting-started)

You need node.js (Javascript runtime) to run the tool chain
(https://nodejs.org/en)

https://create-react-app.dev/docs/getting-started

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 29

Part II - Introduction to React

The browser only understands Javascript and HTML so we need to
build/compile/transpile the code into a Javascript.

In addition to this, Javascript language features are supported to a varying
degree across browsers

Additional libraries and the build chain takes care of this for us and creates a
bundle that is usable by recent browsers.

This is called JSX code
which the browser does
not understand

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 30

Part II - Introduction to React

A component can be expressed as a function or a Class

We are so far using Classes in mxcube but they are getting phased out

A JSX component gets translated into what’s called a React.Element instance and
added to a virtual DOM

A software called Babel (part of the tool chain) takes care of this

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 31

Part II - Introduction to React

You can try it out and test how code is “transpiled” at: https://babeljs.io/repl

The return of the _jsx function is a React.Element

All the elements are inserted in what’s called the virtual DOM, a big tree structure

The synchronisation of the actual DOM (seen by the browser) and the virtual
DOM is called reconciliation

It’s an expensive operation to update the entire DOM, something called DOM
diffings is used to optimise the rendering.

https://babeljs.io/repl

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 32

Part II - Introduction to React

Each component has a life cycle from when it gets “mounted” in the virtual DOM
until it gets “unmounted” and a state

The component gets re-rendered when the state changes

We can catch life cycle events in what’s called life cycle methods or hooks (for
functional components),

Axel and Mikel will mention more about all this in the practical part

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 33

Part II - Introduction to React

When we develop we can run the tool chain so that it updates (re builds) on
change, with “pnpm start”

This means that we can quickly see the changes we make and we can add
debugger statements in the code

The browser “developer tools” are very complete and useful to find out what’s
going on.

