
1

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 2

mxcubeweb
for developers

Collaborating since 2005

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 3

Contents

Part 1 - Introduction and working in the project

Part 2 - mxcubecore for developers

Part 3 - mxcubeweb for developers

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 4

Introduction

Introduction
and

Working in the project

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Olof Svensson

Daniele De Sanctis

Page 5

About us

Antonia Beteva

Axel Bociarelli

Loic HuderJean Baptise Florial (EMBL
Gr)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 6

Collaboration and partners

● Project started in 2003 at ESRF and became a
collaboration in 2005

● Which makes this MXCuBEs 20th birthday :)

● Today we are 15 collaborating partners !

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 7

Collaboration and partners

● The aim is to provide a platform for sharing solutions
and know-how

● We are striving towards making MXCuBE and easy to
deploy and use application (and extend)

● During my 10 years a very friendly and collaborative
spirit with a solution oriented mindset.

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 8

Collaboration and partners

● A very big thanks to all of you !

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 9

A bit of history

You probably already know the story

● First based on Framework2, General ESRF UI Qt3 Framework

● Framework2+ mostly used for MXCuBE Qt3

● Framework2+ ported to Qt4 (much later Qt5)

● MXCuBE web project started

● HardwareRepository previously part of Framework2 becomes
mxcubecore

So, yes !
There are still some very old code in mxcubecore, you have or will probably

notice :)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 10

Organisation

Organisation

● Steering committee

● Scientific committee

● Developers committee (That’s us :))

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 11

Conventions and good practice

● Like in most projects there are some conventions and good
practices

● We try to base those on what’s widely used in the software
community (it makes tooling easier and minimizes cognitive
overhead ;))

● Document in the CONTRIBUTING.md file
https://github.com/mxcube/mxcubecore/blob/develop/CONTRI
BUTING.md

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 12

Conventions and good practice

Brief summary

● Bugs, use the GitHub issues. Check for duplicates and provide as
much information as possible

● Docstring are written with google style doc-strings and we have
been using sphinx for generating documentation (not used since
a long time but now back working again, thanks Fabien :))

● Code style is PEP8, we are using flake8 (still in progress)

● Black for formatting

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 13

Conventions and good practice

Recommendation

● Consider using a editor with good support for formatting, linting
and testing

● vscode, pycharm, (emacs or vi if one still is adventurous)

● There are the .vscode setting .editorconfig files committed to
help setting up the environment

● Use conda or similar tool to handle your virtual environment
and to install development dependencies like flake8 and pytest

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 14

Conventions and good practice

Github actions based CI

● PyTest

● Test coverage report

● Lint (still needs some work)

● Tag and publish package to PyPi

● Build of documentation (still work in progress)
○ https://mxcubeweb.readthedocs.io/en/latest/
○ https://mxcubecore.readthedocs.io/en/latest/

https://mxcubeweb.readthedocs.io/en/latest/

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 15

Using mxcubecore

mxcubecore
for developers

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 16

Getting Started

We never really use mxcubecore on its own but you can,
for fun (or for testing)

Checkout repository
https://github.com/mxcube/mxcubecore.git
Instructions: https://github.com/mxcube/mxcubeweb

Setup your environment
Favourite editor, Pytest, flake8, black, pre-commit
(conda-environment-dev.yml contains the development libraries/tools needed)

Run the tests
Simply running pytest

https://github.com/mxcube/mxcubecore.git

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 17

Getting Started

What is mxcubecore - A control system agnostic library
for sharing common routines and integration of
instrumentation

These objects, routines and instrumentation interface
logic, is implemented as HardwareObjects

Let’s have a look at some code:

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

import os
from gevent import monkey
monkey.patch_all(thread=False)

import mxcubecore
from mxcubecore import HardwareRepository as HWR

ROOT_DIR = os.path.abspath(os.path.dirname(mxcubecore.__file__))

hwr_config_path = "%s%s%s" % (
 os.path.join(ROOT_DIR, "configuration/mockup"),
 ":",
 os.path.join(ROOT_DIR, "configuration/mockup/test"),
)

print("Configuration path:")
print(hwr_config_path)

HWR.init_hardware_repository(hwr_config_path)

def print_value(val):
 print(val)

HWR.beamline.resolution.connect("valueChanged", print_value)
HWR.beamline.resolution.get_value()
HWR.beamline.resolution.set_value(1.4)

Page 18

Simple Example

● Gevented

● HardwareRepository is accessed as HWR

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 19

Simple example - output

The beamline object can now be accessed via HWR.beamline (as seen previously)

But how does this work (in a nutshell :)) ?

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 20

Loading HardwareObjects

● The configuration files are parsed and the hardware objects loaded

● Starting with the “beamline object” and traversing the “hierarchy” downwards loading the
children

○ yaml files loaded via HardwareRepository.load_from_yaml

○ xml files loaded via HardwareReposiotryClient._load_hardware_object

● And yes, our plan is to (eventually) replace XML with YAML !

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 21

HardwareObjects in action

● Each site has its own directory for site specific HardwareObjects and code

● As you now know there is a folder with yaml and xml file configuring these
objects

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

HardwareObjects in action

Page 22

● Important: class name and file name should be the same

● XML is not validated against any schema, we often use ast.literal_eval to evaluate python
structures (There are some ideas on how to provide a stricter definition of the configuration for
each object)

● You may see Equipment and Device instead of Object as well (those are Equipment and
Device are deprecated and should be replaced by Object !)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 23

HardwareObjects in action

● values in <start_tag></end_tag> are retrieved with get_property(“tag”)

● objects with a role are retrieved by get_object_by_role(“role”)

● Future development: (might get replaced by simply adding those roles/attributes directly
when object is parsed)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 24

Channels and commands

Channels and commands provide an abstraction for the various control
systems used

HardwareObjects can communicate with control systems via something
called channels and commands

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 25

Channels and commands

Channels and commands provide an abstraction for the various control systems used

Supported are: Exporter (EMBL), Tango, Taco, Tine, Sardana, EPICS, (SPEC), *BLISS (Not via
channels and commands)

● Channels for values (and events)

● Commands for “functions”

HardwareObjects inherit CommandContainer meaning that we can use add_channel and
add_command

● The library pyDispatcher is used for handling signals/events

● Each protocol implements a CommandObject, a ChannelObject and protocol specific
“Client” for handling events and other protocol internals.

● A channel emits a “update” signal with the new value on a event

Antonia will talk more about this tomorrow

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 26

Briefly about HardwareObjects

● The mxcubecore work have harmonised the API we use for these
HardwareObjects: (summary of changes:
https://github.com/mxcube/mxcubecore/blob/develop/changelog.txt

● There are still some work to be done for instance with signals and further
refining the interface of certain objects and converting to YAML

● A base class for all Hardware Objects HardwareObject and has a well set of
state; READY, BUSY, OFF, FAULT etc.

● A set of commonly used subclasses derived from HardwareObject;

● Introduction of BeamlineObject for facilitating access to “well known”
HardwareObjects

● Yaml configuration

https://github.com/mxcube/mxcubecore/blob/develop/changelog.txt

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 27

Briefly about HardwareObjects

● The basic objects we use are, HardwareObject, AbstractActuator,

● From these there are a number of objects derived that everybody most likely will
use or can reuse: AbstractNState, AbstractMotor, AbstractTransmission,
AbstractResolution, AbstractDetector, AbstractShutter, AbstractSlits, AbstractBeam
and … actually the list is quite long :)

● To keep in mind:
○ HardwareObject provides set_state and get_state

○ AbstractActuator provides set_value, get_value and set_limits, and get_limits

○ AbstractNState is a AbstractActuator where the value is in finite set of values
(states)

● Thanks to Antoina:
https://github.com/mxcube/mxcubecore/blob/develop/Hierarchy.pdf

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 28

About the queue

About the queue
(Ok, take a deep breath ;))

HardwareObjects are important for instrument control, but WE want
to collect data !

Data acquisition tasks/protocols are implemented as QueueEntry
objects

These QueueEntryObjects are executed via a queue (QueueManager)

The queue further provides means for automation

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Original Queue - Static

Page 29

QueueManager
QueueManager.py

SampleQueueEntry
queue_entry.py

GroupQueueEntry
queue_entry.py

DataCollectionQueueEntry
queue_entry.py

QueueModel
queue_model_objects.pyExecutes

Has

● QueueManager executes QueueEntry objects each having data models.

● Each QueueEntry in turn is a tree with Parent and child nodes, where the tree is
traversed downwards (depth first), children gets executed after the parent

● Each entry has a pre and post execute that gets executed before and main
execute function

● In practice maximum three levels of QueueEntry objects are used, what's called
SampleQueueEntry, GroupQueueEntry and QueueEntry. (Workflows sometimes
uses more) (The use of Group might be removed/changed)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Current Queue - Static

Page 30

QueueEntryGroup
queue_entry.py

QueueEntry
queue_entry.py

QueueEntry
queue_entry.py

QueueModel
queue_model_objects.py

● QueueModels are written as python objects that gets converted to dicts when
passed around, hard to debug and know what to pass.

● Creation of each type of Queue entry is more or less manually wired for creation in
the UI

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

New Queue - Dynamic

Page 31

queue_entry (module)

QueueEntry
queue_entry_one.py

QueueEntry
queue_entry_two.py

CommonQueueModels

● Each QueueEntry is self contained in its own file with its specific models

● Models are expressed as Pydantic models

● All common models are shared in common queue models module

● Each QueueEntry object in the queue_entry module (or other search path) is
dynamically imported

● A generic UI interface/dialog can be built based on the model data associated
with a QueueEntry (an evolution of the current workflow dialog)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

New Queue Proposal

Page 32

Example - New style queue entry

Marcus Oskarsson (marcus.oscarsson@esrf.fr)

Example UI

Page 33

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 34

Using mxcubeweb

Using mxcubeweb

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 35

Conventions and good practice

Working in the project

● Same conventions and guidelines as mxcubecore

● CI Pipeline is more or less the same as mxcubecore

● Additionally running Cypress end to end (e2e) tests

● Something called ESLint for javascript

● Build of documentation (still work in progress)
○ https://mxcubeweb.readthedocs.io/en/latest/

https://mxcubeweb.readthedocs.io/en/latest/

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 36

Installing and configuring

Instructions on: https://github.com/mxcube/mxcubeweb

https://github.com/mxcube/mxcubeweb

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 37

Installing and configuring

Instructions on: https://github.com/mxcube/mxcubeweb

Designed for MX experiments - with the idea of same interface on all sites

To a certain extent configurable instrumentation control, procedures / methods

https://github.com/mxcube/mxcubeweb

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 38

Installing and configuring

The display of available instrumentation is configurable in ui.yaml

To the left motor control and on the top “beamline setup”

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 39

Installing and configuring

Methods and procedures can be added in three ways:

● Equipment view - For not so often used or temporary
instrumentation commands

● Beamline action - For procedures that are frequently used and
involves more than a simple command

● Queue entry / task - For collecting data

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 40

Installing and configuring

Equipment view - For less often or temporary instrumentation commands

Methods are automatically added if they are “exported” with the export tag and the method is
type hinted (at least with a return type)

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 41

Installing and configuring

Beamline action - For procedures that are frequently used and involves
more than a simple command

Configured as the beamline_actions of the Beamline hardware object

The controller commands define the command arguments programmatically via the
CommandObject.add_argument method

The annotated command uses the method typehints to define the arguments (still work in
progress, sorry the UI display is currently broken, we are working on it)

Mikel will make a practical about Beamline actions

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 42

Installing and configuring

Queue entry / task - For collecting data

Write a task that takes a Pydantic model and add it to available_methods of Beamline object

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 43

Overview

Control systems

mxcubecore (library)

mxcubeweb-server

mxcubeweb-ui
ReactJS

mxcubeqt-ui

Frontend built using Javascript, React and
bootstrap, redux …)

Asynchronous communication done over
websockets

Some of the bigger libraries we are using:

● Flask

● Flask security for handling user and session

● Flask-SocketIO for web sockets

● SpecTree for OpenAPI documentation,
http://localhost:8081/apidoc/swagger/

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 44

Overview

Adapters found in the adapter directory, adapts to
standardised API of HardwareObjects.

Components are larger pieces of functionality, such as
queue, lims, workflow with static mapping to routes. (Some
might become adapters in the future)

Models for defining complex data structures and
marshaling

Routes contains explicitly defined routes

Something called an adapter object converts (adapts) a HardwareObjects to the web world,
get and set over GET and POST requests and events over websockets.

Marcus Oskarsson (marcus.oscarsson@esrf.fr)Page 45

Future perspectives

After MXCuBE Web 4

- Update/Modernize Javascript code

- Using typescript ?

- Exchange Speectree for FlaskOpenAPI3 or other ?

- Possibly remove dependency on gevent

- Your ideas

