MXCuBE refactoring -
the new Beamline Object

Rasmus Fogh

GOL

Refactoring goals

Less code, less complex code
- Less to maintain

- Less risk of misunderstandings or mistakes
More standardisation, homogeneity

- Easler to share
- Easier to write generally useful code

Long term advantage, but more work up front
A lot of rewriting at the current stage

GOL

Configuration

 Beamline-specific hardware
- Beamline-specific parameters
- Beamline-specific code, classes

* Pre-refactoring :
- Configuration in .xml files
- Identified and addressed by file name

- Many links to the same object
from different objects

(e.g. Collect and Beamline_setup)
GOL

Beamline-setup

SOLEIL PX2
<object class="BeamlineSetup">
<object href="/diffractometer/diffractometer”
role="diffractometer"/>
<object href="/diffractometer/omega" role="omega_axis"/>
<object href="/diffractometer/kappa" role="kappa_ axis"/>
<object href="/singleton _motors/photon_energy" role="energy"/>

EMBL-HH P14
<object class="BeamlineSetup" role="BeamlineSetup">
<object href="/mini-diff" role="diffractometer"/>
<object href="/en1/diff-omega" role="omega axis"/>
<object href="/eh1/diff-kappa" role="kappa axis"/>
<object href="/energy" role="energy"/>

GOL

Problems

* Role names are (mostly) standardised

- But the same object may be defined In several
different places - where should you look?

- Each must be configured and maintained
separately

- You need one of the container objects to hand

- E.g. get_wavelength
In both Energy, Collect and/or Resolution

 HardwareRepository.getHardwareRepository()
.getHardwareObject(filename)
works from anywhere

- But file names vary between beamlines GDOL

Beamline Object proposal
* First proposal by lvars Karpics (‘api/’)

e Current proposal by me
- Merged into master
- Beamline-specific configuration still TBD
- Some aspects not finally settled

GOL

Beamline Object

One central location to get hold of all hardware
objects

All access via standardised role names
Protect against local naming variants (and typos)
Specify name and type of common objects

- Specify abstract class
- Determines what you can code to
Specify in code
- So linters can check which attributes exist

— Limits free configurability
GODL

Beamline Object - contents

e Contained objects defined as properties

@property

def energy(self):
""" Energy Hardware object
Returns:

Optional[AbstractEnergy]:

return self. objects.get("energy")

content_roles.append("energy")

- Visible to linters and type checkers
- Defined - with their type - in code
- Remain visible in subclasses

GOL

Beamline Object - attributes

e Configured attributes must be defined in __Init__

def __init__ (self, name):

List[str] of advanced method names
self.advanced_methods =[]

List[str] of available methods
self.available _methods =[]

int number of clicks used for click centring
self.click_centring_num clicks =3

bool Is wavelength tunable
self.tunable_wavelength = False

- Visible to linters and type checkers
- Defined - with their type - In code
~ Remain visible in subclasses GOL

ConfiguredODbject class

 Replacement for HardwareObjectNode
o Superclass for Beamline

o Supports yaml-configured HardwareObjects

GOL

Yaml configuration
JSON-like

Accepts comments
Designed for configuration files

Yaml 1.2 (ruamel.yaml)
- Removed most gotcha’s.

GOL

beamline _configuration.yml

_objects:
llomap
Hardware (Ordered dictionary):
- session: session.xml
- machine_info: mach-info-mockup.xml
- transmission: attenuators-mockup.xml
- energy: energy-mockup.xml
- beam: beam-info.xml

Non-object attributes:
advanced_methods:

- MeshScan

- XrayCentering
tunable wavelength: true
disable_num_passes: false

GOL

Yaml configuration loader

Loads ConfiguredObject subclasses

Enforces container hierarchy rooted at
Beamline

* Adds container-content links

Only loads pre-defined content

Only loads pre-defined attributes

Works for loading normal hardware objects

- With their own (nested) content

- Hardware objects nested in Diffractometer
(motors), Detector (distance), ...

GOL

Beamline-specific subclassing

Simple to write

Maintains superclass content roles and data types
Maintains superclass attribute names

Extensions must be defined in subclass code

New attributes can not be added in config files

GOL

Beamline-specific code

* People will write beamline-specific code
- What is the best way of organising it?

e ConfiguredObject subclasses forces you to code
extensions explicitly.

- Code is (often) documented and shared

~- Code is lintable
— Attributes added in config are neither

 Why tempt people to bypass the specification
system?
GODL

END

GOL

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16

