
1

Developers’ meeting – discussion summary

MXCuBE project meeting, Trieste, September 2018

DRAFT

The developers discussions happened over the refactoring session and the developers’ meeting
proper. Action points were agreed in the joint session with the steering committee.

New conclusions

The main decision was that the immediate emphasis should be shifted to merging the separate
branches of the HardwareObjects repository. More thorough-going refactoring will require a deeper
consensus about the goals to aim for and the approach to take. Accordingly the work on the UI-API
is suspended pending further discussions.

During discussion the point was made that the UI-API may not after all enough to serve as the basis
of an implementation. The reason is a difference in architecture that was unfortunately not fully
appreciated in the discussion phase: in the V3 branch the entire state of the system (including e.g.
whether a collection can currently be started or which sample is currently selected for adding to the
queue) is kept on the beamline/hardware side. The user interface is completely dumb and merely
reflects the beamline state and accepts commands. In the Qt branch a lot of business logic is
currently done by interaction and signals between UI components (bricks). It follows that while the
V3 branch is already set up to make use of a UI-API, the Qt branch would need significant
refactoring. This raises some further questions: If the UI-API is to form the basis for harmonising
the code that implements it, would it not be necessary to define also the behaviour that is triggered,
the signals that are sent, and in general the underlying business rules as part of the UI-API
specification? If that is done, should the end result be an application layer shared between the two
interfaces (with, obviously, some scope for customisation) – in which case the UI-API would be
just a stepping stone in producing the shared application layer? If, on the other hand the UI-API is
not to form the basis for harmonising the underlying code, what will be the benefit of the necessary
refactoring, beyond making it easier to switch between Qt and web interfaces?

Where are we?

This, of course, leaves the discussion on how to proceed. The goal is still to make MXCuBE easier
to develop and maintain, reducing duplication and improving clarity. As Vicente pointed out, we
are still at a point where we can make changes that break backwards compatibility and expect all
participants to adapt. Since this may become ever more difficult as MXCuBE becomes more widely

Rasmus Fogh, Global Phasing 09/10/18

2

adopted, now would be the right time to consider any far-reaching changes. There are a number of
proposals for changes, but it would take a lot of resources to do all of them. And, as Matias pointed
out trying to do everything you risk to end up doing nothing:

l UI-API. A specification of which functions can be called by a (dumb) UI and what their
effect should be. This would ensure a beneficial separation between user interface code and
business logic. It is not tied to using a web technology, but is a simple interface
specification. As mentioned above, it is an open question to what extent the specification
should include describing the behaviour expected when calling the interface functions, so as
to allow the two different UIs to (partially?) share the body of underlying code.

l Shared application layer. A shared application layer would incorporate the behaviour of
the program: the states of the system, the transitions between them, and include the rules for
what signals must be emitted and received to make things happen. Preferably it would allow
individual objects to be implemented in isolation, with communication to other objects
through well-defined signals. The UI-API would then be the interface specification of the
UI-facing side of the application layer. The application layer would ideally be shared
between all branches and sites. It could be based on a state machine, a server (like it
currently is for V3), or a set of objects.

l Core functionality. Some central functionality could/should be fully shared, and should
maybe be integrated with the shared application layer (if any). These are blocks like the
Session, the Queue, the Beamline-setup/configuration/HardwareObjectRepository system,
and the LIMS (ISPyB) connection, code that does not correspond to actual hardware and
does not have highly site-specific implementations.

l Abstract or Generic hardware objects. It would be an advantage to have uniform function
specifications and common behaviours for the main building blocks of a beamline (beam,
diffractometer, detector, sample changer, processing). This would give a standard way for
other types of objects to communicate, give a central location for common functions, and
make it easier to understand and share code from other sites. Site-specific functionality
could then be handled in subclasses, or additional classes.

l Branch merging. Currently the hardware objects used by the two main branches of
MXCuBE (V3 and Qt4) are in separate branches that have drifted apart over several years.
Any closer collaboration clearly requires that these be merged. It would be highly desirable
to remove unused blocks of code and preferably to merge near-duplicates, so that there is
less code to keep track of when making a change, or looking for pre-existing functions.

l Working procedures. To get any lasting benefits, people must do the necessary work, use
the agreed coding, and avoid splitting into site-specific branches again. Unfortunately clean,
documented and shared code is slower to write in the short term, and people tend to work
mostly on their own beamline, and under heavy time pressure. The master branch was
originally seen as a place to play and try out things; MXCuBE3 avoided it in order to have a
relatively stable base for their user interface changes. Others have avoided it because it

Rasmus Fogh, Global Phasing 09/10/18

3

simply changed too fast. A specific git-based workflow could in theory deal with these
problems – if properly followed. Maybe more important would be to build in incentives to
get the merging and consultation done at regular intervals. More meetings? Regular releases,
which serve to specify what code is officially integrated, and what each beamline is
conforming to? Some policing?

It has been a specific problem lately (possibly made worse by the summer season) that pull requests
can take a very long time to get accepted and merged. This has likely been worse for the Hamburg
group, who have produced a lot of new code, and who do not have an equally active partner group
on the same branch that can do mutual vetting. After some discussion (formal time limits, relaxing
the requirements for accepting code, …) it was decided to rely on the sense of responsibility of the
individual developers, and to make sure that all relevant developers actually have permission to
approve pull requests.

Decisions

The conclusions of the developers’ meeting were presented to the joint meeting with the steering
committee. The decision to break off the work on implementing the UI-API was met with surprise,
but accepted. The developers’ group was asked for a roadmap to make the necessary changes, but
no such roadmap is yet available; what can and should be done is still being discussed. As pointed
out by Peter Keller there is an element of discovery in this that does not lend itself to precise
roadmaps.

l The first action, as decided by the developers’ meeting, is to merge the different hardware
objects branches into a single shared code branch. This, it was estimated, would be a clearly
feasible task. The decision was approved by the steering committee.

l It was decided to execute this merge at a face-to-face developers’ meeting, to take place as
soon as practicable. The meeting is scheduled for 15-16 November at ESRF Grenoble.

l It was further decided that the series of monthly developers’ web meetings had had a
positive effect and should be continued.

l The next MXCuBE meeting will be held at MaxLab in Lund in the week 19-24 March

l The developers’ group will consider how to proceed with harmonisation / refactoring / code
improvement (as discussed under ‘Where are we’, above), with particular attention to which
parts of the code should eventually be shared between branches and sites, how the code
should be divided into packages with defined interfaces, and to future collaboration
procedures.

l The developers’ group is directed to present a plan, together with a roadmap and timing
estimates to the steering committee no later than one month before the next MXCuBE
meeting. This timing requires homework to be done before the mid-November face-to-face
meeting, so that substantial discussions can start at the meeting.

Rasmus Fogh, Global Phasing 09/10/18

4

l There is a special need for documentation, especially documentation that allows new
entrants to set up MXCuBE, as well as to start coding. It was decided that new member
groups and people doing such setting-up should be tasked with putting their questions in
writing, and gathering the answers in a central location, for instance a Github Wiki, in order
to build a manual. Groups that had recently done a lot of setting up, such as Elettra, should
start by organising and contributing their existing notes.

l Rasmus Fogh (ACTION) is tasked with writing an executive summary of the work on the
UI-API for the steering committee.

Rasmus Fogh, Global Phasing 09/10/18

