A hitchhikers guide to MXCuBE
development

a discussion starter

Rasmus Fogh,

GOL

Contents

* Introduction

» Part 1: Code
— Repositories
— Installation and dependencies
— Modularity

 Part 2: Collaboration
— Versions and code flow
— Refactoring

— Testing GDL

Why this talk?

o Starting point for discussion
— Where are we?
— Where do we want to be?
— What should we do to get there?
— What can we do and what should we let drop?

« GOL has resources to contribute
— How best to employ them?

GOL

MXCuBE collaboration

Many dispersed groups
— Who are both users and developers
— No release to external parties

Everybody work to their own beamline
— You need a beamline for proper testing

Different hardware, different projects -
different versions

Intense time pressure GDdL

At the end of a shut-down:

Does Sir want his tea now,
or does Sir prefer to wait
till it is ready?

GOL

Contents

* Introduction

* Part 1: Code
— Repositories
— Installation and dependencies
— Modularity

 Part 2: Collaboration
— Versions and code flow
— Refactoring

— Testing GDL

Repositories
* Two active user interfaces (web and Qt4)

» Application combined from several
repositories:

Ul, HardwareRepository, ...
— NOT a problem,

— as long as it is clear what goes where

« We need one more repository:

— Developing with submodules is clumsy
— Separate submodules-only ‘Release’ repository.

— Use to combine different repositories
into a release GOL

Installation system

No single-step installer

No up-to-date dependency list

It works on the development machine, but ...
Sort out your own dependencies

Single-step installer for easy setup
— With docker to test on a standard OS version

Matias has a proposal (?)

GOL

Modules with clear interfaces

Good practice
— necessary for multi-branch/site coding

We need functions that

— Do all you need

— Are clearly defined

— Have the same effect in all branches/sites

— A lot already done: Abstract and Mockup classes

Respect the interface
— Implementation details in private functions

Matias has a proposal (?) GOL

Example: moving motors

Some classes have moveMotors()
Others have move_motors()

Some have both - what you gonna call?

move motors (motor positions)

does NOT always move the motors to the

input positions

— Moving kappa may change alignment motors

after the fact
— Kappa or phi may not be moved at all (!)

GOL

Example: moving more motors

AbstractMotor:
def move (self, position,
walt=False, timeout=None) :

MD2Motor:
def move (self, absolutePosition,
timeout=None, wait=False):

SardanaMotor:
def move (self, absolutePosition)

Resolution:
def move (self, pos, wait=False)

What you gonna call? GOL

Contents

* Introduction

» Part 1: Code
— Repositories
— Installation and dependencies
— Modularity

 Part 2: Collaboration
— Versions and code flow
— Refactoring

— Testing GDL

Current versions

Future future | Change
Lab Ul HwODbj Ul HwODbj date
MaxIV web/master 2.2 web/master | master?| TBD
EMBL-HH |Qt4/master| master | Qt4/master | master n/a
ESRF Qt3/2.1 2.1 web/master | master? | Q1 2018
SOLEIL PX1 Qt3/2.1 2.1 Qt4 master? | Q1 2018
SOLEIL PX2 Qt3/2.1 2.1 web master? | Q1 2018
BESSY Qt4/2.2 2.2 Qt57?? master? | Q1 2018
DESY P11 |Qt4/master| master Qt57?? 77
ALBA Qt4/master| master n/a
Elettra web/master 2.2 (Submodule)
LNLS-Brasil Qt4/2.2 2.2 Qt4/master ongoing

Current status - master

Master

Hamburg, Grenoble, and Lund
work closely together,

test continuously,

and upgrade to newest version

GOL

Current status - overall
»

Side ‘

branches
.

“ Master

o

Each site programs for
- and tests on -
their own beamline

GOL

Hard to upgrade
-

Side ‘

branches
@

‘ ‘ Master

»
A

/
/

Which commit is 4 4
Consistent? ! !
Tested? RSP
Going to be supported? s

How much adaption is needed? GOL

Hard to contribute

Side ‘ ‘
branches
@
‘ ‘ ‘ Master
o !
 You cannot test without a beamline //'
« Additions - and bugs - _’

-—

go right into production

* Other, busy, people have to test for you
Y, P€0p y GOL

Hard to synchronise

Side
branches ‘

* Your changes need to go to several places
that you do not have running locally
 If not synchronised you will lose them

on upgrade GDOL

Multiple, divergent branches

A single shared release would be ideal

— But would require all sites to agree and move in
tandem

— Is that realistic?

The greater the divergences, the harder any
collaboration

All the nifty Git workflows assume
a single active, released branch

All solutions require extra work
GOL

Solution: Releases

All production code comes from a release
— No development branch in production
— Releases are supported

Code starts in development branch

— is tested (again) on move to master release
branch

Older releases become side branches,
if supported

Each release is managed by the beamline
teams that use the release GOL

2.4

Workflow proposal

Current release

Develop

GOL

Leading edge release

Current release can be gradually updated in
master branch

All changes are synced with development
branch

Releases are tagged when other sites
upgrade

Responsible sites help with merging and

testing of contributions
GOL

Side branch releases

Changes and additions must be synced
to development branch

— otherwise you lose them next time you update

All code (including config) must be checked
into git for people to see

If you keep your branch ready, updates are
easier (and will get communal support)

Too old releases lose MXCuBE support (!)

GOL

Contents

* Introduction

» Part 1: Code
— Repositories
— Installation and dependencies
— Modularity

 Part 2: Collaboration
— Versions and code flow
— Refactoring

— Testing GDL

Refactoring
snake _case v. CamelCase

Python 3 support
— Python 2 comes off support in 2020

Code duplication
Standard naming conventions
— It is Obj.name? Obj.name()?

Obj.get_name()? Obj.getName()?

Functions changing content of input collections
— E.g. {string:value} - {MotorObj:value}

GOL

Practical example

* | tried to fix some problems
— Stop objects from exposing internal collections
— Remove mixed tab/space indentation from code
— Both count as bugs (!)

 The combined commit changed 115 files

* Pull request rejected

GOL

S0, what is the problem?

Any change, however small,
might break working code

— Yes. Serious problem. Needs agreed procedures.

Too much work to read through and accept
— Well, OK.

Hard to compare old and new files by diff
when there are so many changes

— Well, OK.

‘Breaks code history’
— How so? Git preserves the history perfectly! GOL

Procedures for changes

 |f we want clean, standardised code
— There must be a way to make it happen!
— Commit enough resources to integrate changes

— How should one do it?

« Make this kind of changes just before a release,
to simplify comparisons?

* If we do not have the resources
— We should drop the standards

— Decide up front which things will get done
- and which things will not
GOL

Contents

* Introduction

» Part 1: Code
— Repositories
— Installation and dependencies
— Modularity

 Part 2: Collaboration
— Versions and code flow
— Refactoring

— Testing GDL

Unit tests

Test each module function by function
Easy to run, useful to catch errors as you go
It is not that bad to set up

Serves to define specification / interface
— This is not a neutral activity!

Fit well with modules and abstract classes

— After code has been modularised?
GOL

System tests

Slow - to be done when making a release

Start the program and run each major
functionality

Use both mock and beamline (if you have one)
— Collect emulation can maybe help?

Make an agreed list of tests, so other people can
do it too.

If you see an error, FIX IT! GOL

Acknowledgements

All of you in MXCuBE

who patiently answered my questions

GOL

END

GOL

