2025-01-20 MXCuBE AutomationWG

To inform: Didier Nurizzo Marcus Oskarsson Daniele De Sanctis Estelle Mossou Matthew Bowler Romain Talon Max Harunobu Nanao Montserrat Soler Lopez Antonia Beteva Yan Walesch Wout De Nolf Johannes Kamps

Minutes of Meeting

Approval of Minutes:

• Minutes of the previous meeting have been approved.

Agenda:

The aim of this meeting is to discuss how x-ray centering is performed at the different sites in order to find a suitable consensus before its implementation in the core of MXCuBE. A detailed description is needed in order to define the level of abstraction that could be then transferred in the code. We divided the discussion as follow:

- 1. Modalities of X-ray Centering:
 - Types of scans: Linear vs. helical.
 - Number of scans: 1D vs. 2D.
 - Processing of the scans.
- 2. Required Inputs and Expected Outputs:
 - Inputs: Needed for X-ray centering based on the chosen modalities.
 - Outputs: To include the optimal position, the region of greatest interest, resolution limits, etc.

Notes:

- 1. During the meeting on December 16th, it was decided that "all sites are invited to deposit the information they would like to have as input and output for X-ray centering in the GitHub discussion."
- 2. Rasmus provided useful information in our GitHub discussion.
- 3. A tour de table was conducted to gather inputs and outputs used by different sites to run and process X-ray centering:
 - ESRF:
 - Optical centering (automesh) defines a rectangle where the 2D mesh will be performed.
 - After a 90° rotation, a line scan is collected with a default length.
 - Parameters for data collection are default values provided by the beamline and/or embedded in the AbstractDiffractometer.
 - Soleil:
 - ° Optical centering using MURKO allows up to five helical scans at different angles.
 - Future updates may replace helical scans with line scan data collection using the MD3 diffractometer.
 - MAX IV:
 - A 2D mesh scan is followed by a line scan after a 90° rotation.
 - ANSTO:
 - Optical centering using OpenCV defines two rectangles at 90° apart.
 - Two mesh scans are performed based on these rectangles.
 - SIRIUS:
 - No X-ray centering implemented yet.
 - Optical centering aligns the crystal center with the beam.

Discussion Points:

- 1. Definition of X-ray Centering:
 - As a job, procedure or method. For now, all definitions remain interchangeable and further might be needed in the future to clarify this
 definition
- 2. Incorporating Optical Centering:
 - It was decided to keep optical centering as an independent method rather than integrating it into X-ray centering.

3. Inputs for X-ray Centering:

- The volume for scans, with options to simplify it to a 2D polygon or a single point.
- The motor positions of the diffractometer defining the volume. An example of the calculation that has been developed by Martin for Soleil would be welcome.
- Most parameters will be beamline default values, with user-overridable options for resolution, beam size, and exposure time
 /transmission, etc...
- 4. Action Items:
 - Gather all input information used on different beamlines for X-ray centering.
 - Upload this information under the Automation/UDC and Queue discussion in GitHub.
 - · Contributions are particularly encouraged from SSRF, BESSY, and Hamburg before the next meeting.