
1

MXCuBE Developers’ meeting

​November 8, 2022

​DRAFT

Participants :
​ Marcus Oscarsson, Antonia Beteva, Oscar Svensson(ESRF)
​ Rasmus Fogh, Gerard Bricogne (Global Phasing)
​ Jacob Oldfield , Nicolas L (ANSTO)
​ Michael Hellmig (HZB)
​ Meghdad Yazdi, (MAXIV)
​ Roeland de Boer (ALBA)
​ Bo Yi (NSRCC)
​ Leticia C, (LNLS)
​

Qt / mxcubecore development plans
RF introduced the problem. The mxcubecore develop branch is developing quite fast
under the impetus of the MXCuBE web version, and work is now beginning on the (long
agreed) refactoring of the queue. No site is maintaining a Qt-interface version in sync with
mxcubecore/develop, and different sites are to different degrees quite far behind, having
adopted to varying degrees the extensive refactoring that has been happening in
mxcubecore. The code at various sites has diverged so much that it is impossible to
maintain code that should work at multiple sites without supporting multiple parallel
branches and extensive cut-and-paste. A discussion (better: agreement) on a target for
integration of the Qt branch with mxcubecore would be indicated. Which changes should
be included, in the first instance? Which program versions (of Python, Qt and other) should
it be based on? How do we plan to get there, with the available resources? And how do we
fit it into the agreed branch and release procedures?

It is noted that several developers have been lost from the project (at EMBL Hamburg and
elsewhere) and so resources are stretched thin. Most development of mxcubecore is
happening at the ESRF, and since they do not use Qt interfaces they can hardly do much
in terms of keeping the connection to the Qt interface alive. RdB has been doing
considerable work on bringing the ALBA version up to the tip of the mxcubecore develop
branch, but RdB is the only developer on the project at ALBA now, and will not have time
to continue with this particular job until 2023. It does not help that mxcubecore is changing
so rapidly.

The question is raised which Qt version should be aimed for. Some sites are still on Qt4,
Soleil, ALBA (and GPhL) are on/adopting Qt5, but AB proposes going for the current Qt

Rasmus Fogh – Global Phasing 11/10/22

2

version – Qt6. [Post meeting: Qt4 is long out of support and hard to install (last release
2011), Qt5 is on limited legacy support only, and Qt6 is already at version 6.3/6.4].

There are discussions on the general approach. Several propose sticking to the tip of the
development and updating regularly to keep changes small at each stage. ANSTO for
instance has a 3-month release cycle and only does bug fixes in between releases. While
this is undoubtedly the best approach, the question is raised on how to achieve it
realistically in a situation where many sites are very far behind and find it hard to find
resources. One proposal is to agree on a target for Qt integration that is short of the
current development tip and/or continuing development of mxcubecore (e.g. refactoring of
the queue system) in a separate branch to allow the sites to catch up. To the extent that
the refactoring would break compatibility it might anyway be necessary to use a new major
version for these changes. This would, however, run a very real risk of different branches
diverging so far that they effectively split up the project (as MXCuBE history shows).

It is discussed how well the current release system supports dealing with these problems.
The master branch has been stable for a long time, but sites are trying to catch up directly
with the develop branch. Also, ESRF production code already uses (a version of) the
develop branch. In theory the system of a stable master branch, a develop branch moving
ahead, and freedom for individual sites to write site-specific code in any way they wish
should be sufficient, However, RF notes that this system is based on a model where only
the master branch is released and used. MXCuBE reality is that several sites are doing
continuous development from their own, individual starting points not necessarily limited to
site-specific code, and the release model does not explicitly consider how to deal with
production use of development branch code, or tracking and incorporating changes from
side branches. One possibility would be to use tags more extensively (as ANSTO does
internally). This would make it clear which starting point you were using in each case but
would not run the risk of diverging development that you would get with separate branches
(nor would it support local development to the same extent, of course).

The first thing to do should be to take a status of where the various QT-using sites are, in
development terms.
ACTION: MO to send out a call for the Qt development status to be included in status
reports at the December MXCuBE meeting.

It is agreed that sites that work with Qt interfaces should get together and agree on a plan
for the way forward. No action points is raised, so a good time might be at the MXCuBE
meeting, when we have heard status reports from the sites.

Continuous Integration
1. JO give a lightning overview of his Continuous Integration PR. It includes using the

newest Python system for building and installing code, with the Poetry framework
for publishing, and the use of Github actions. One advantages of the system is that
it simplifies the handling of dependencies including optional (as in site-specific)

Rasmus Fogh – Global Phasing 11/10/22

3

dependencies. The system would work equally well for conda or VM installation.
Part of the PR proposes to use the Black code regulariser which, now that Python
2.7 is no longer supported is being moved out of ‘safe’ mode. Likewise the addition
of the (very aggressive) Flake8 coding style enforcer. A first run with all checks
enabled produced over 1000 errors on the current code base, and changed 800+
files. It is noted that Flake8 is specific to each python version. 1) This means that
we should make sure that we are using the right Flake8 at each site. 2) the tests are
currently run for all supported Python versions from 3.7 onwards; we should
consider if we can narrow that down.

Black/Flake8 would be run prior to making PRs. We might consider making passing a
condition for acceptance, but there would be no automatic code changes in the repository.

RF raised the problem that due to the very widespread changes in code, black/flake8
would make it harder to make major merges (as is required if there are independent
changes on both branches being merged). As opposed to the case of comparing pre-black
with post-black, you would be looking at extensive difference and have a hard time
deciding where a given difference arose and how it should be handled. The discussion
following this suggested that one could start with quite permissive settings for black/flake8,
catching (and fixing) only the most egregious problems, and gradually extending the
scope.

ACTION: MO to add questions about dependencies and specifically Python version to his
pre-meeting questionnaire.

Automatic documentation
JO had produced an introduction to the problem. It was agreed that autogenerated
documentation was a very good idea. The biggest practical problem would seem to be that
this requires consistent systematic doc strings – which are not universally present in the
current code. We did agree earlier to change over to Google style doc strings, and there
was a certain push towards introducing this, but there is clearly a way left to go.
Another question is whether to adopt Sphinx or MKDOCS for the automatic
documentation. Sphinx is a bit more established (and is in use internally at ANSTO), but
Sphinx uses rst text whereas MKDOCS uses the more familiar markdown language.
Sphinx supposedly has a markdown plug-in, but it is untested whether that will work
sufficiently well with the entire family of Sphinx tools.

The sense of the meeting is that something like this should be adopted, and that the
meeting would welcome a recommendation for the Sphinx/MKDOCS choice from a
knowledgable person.

Rasmus Fogh – Global Phasing 11/10/22

4

Queue refactoring
The ESRF (MO) have started refactoring the queue system, as long agreed would be
desirable. The goals of the refactoring is to introduce Pydantic data classes to precisely
define the content of data structures; this allows type hints, better defined information
transfer between processes and computers, and better linting than dictionaries. Also to
allow for plug-in addition of queue entries, simplification of the mechanisms for adding
them, and splitting of the large and unwieldy files that currently hold queue model objects
(QMOs), and queue entries. MO pointed out that Pydantic classes were pure data holders
(which had also been the original intention behind the QMOs) and that getting rid of the
QMOs and moving their active functionality elsewhere, would simplify the system, which
was slightly in disarray currently.
The point has had a certain amount of discussion on github, mainly between RF and MO.
The conclusions (summarised here) was that adding Pydantic, splitting and moving the
main files, and adding capacity for plug-in addition were capabilities that could be added
and gradually extended without breakage. RF, however, pointed out that the queue was
currently defined as a tree of QMOs, and that changing this (however desirable) would be
a breaking change in the way of enqueueing entries that would require prior agreement on
the new system. MO proposed to make a MAPP (official enhancement proposal) to start
this discussion.

Any Other Bussiness
JO communicated that ANSTO was 90% along the way of making an Ophyd detector
simulator. GB hooped that this could be presented as a talk in the December MXCuBE
meeting

 Next meeting
We will have one more meeting before the December in-person meeting in Grenoble. Date
and time TBD

Rasmus Fogh – Global Phasing 11/10/22

