

Deploying experimental strategies and workflows

A progress report

Rasmus Fogh Global Phasing Ltd, Cambridge, UK

MXCuBE meeting, virtual ESRF May 2022

Introduction – the GΦL Workflow

- Development and deployment
 - EMBL-HH P14 collaboration
 - ESRF MASSIF1 collaboration
 - Centring issues

The problem - example

CDJ.

$G\Phi L \text{ On-line strategy calculation and execution} \\ \text{Global Phasing Limited}$

- Calculation of optimised multi-orientation acquisition strategies in real-time, from characterisation results
- Workflow* includes characterisation, indexing, pre-centring, parameter setting, and data acquisition
- Choice of strategies
 - Full, for high-quality data
 - OR quick, for fast-but-guaranteed-complete data
- Integrated into MXCuBE

• Native, MAD or SAD collection strategies

- Adapted to resolution, symmetry, crystal orientation, and accessible (re)orientations on the available goniostat
- Use full range of κ values with minimal goniostat shadowing
- Bespoke processing, allowing for residual shadowing
- Set default transmission*, depending on resolution
 - Uses pre-calculated radiation sensitivity values
 - Assumes B-factor increase of 1Å²/MGy
 - '*Top hat*': Based on mean flux density = flux / beam area

Strategy types

- Native, full
 - Optimised for most uniform distribution of redundancy
 - 360-960°, 2-4 orientations, depending on symmetry
- Native, quick
 - Optimised for completeness and speed (avoiding cusps)
 - 180-360°, 1-2 orientations, requires characterisation
- Phasing
 - Acquire Bijvoet pairs at similar dose and scaling, using alignment of even-order symmetry axes or inverse-beam
 - SAD, 360-540°, up to 4 orientations
 - MAD, 180-360°, up to 3 orientations, wavelength interleaving

Global Phasing Limited Monoclinic native - redundancy

Reflections for 1 * 360° strategy (left) v. 4 * 220° strategy (right)

GDD Global Phasing Limited Orthorhombic phasing strategy

90° and 180° sweeps, aligned on different axes for mutual cusp-filling

Orthorhombic phasing strategy

GΦL

90° and $180~^\circ$ sweeps, aligned on different axes for mutual cusp-filling

Workflow integration with MXCuBE

- Introduction the GΦL Workflow
- Development and deployment
 - EMBL-HH P14 collaboration
 - ESRF MASSIF1 collaboration
 - Centring issues

Where are we in terms of deployment?

Global Phasing Limited

 Workflow installed on P14 at PETRA III Collaboration on improvements.
In regular use by power users

 Porting workflow to MXCuBE3.
Being installed at MASSIF-1, integrating with MASSIF-1 EDNA automation workflow

S		EI	L
	SYNCH	ROT	RON

• Workflow installed and tested at SOLEIL, under further testing by beamline scientists

• Workflow installed on BL13 at ALBA under testing by beamline scientists

- Each beamline needs working code for workflow integration
- Two different user interfaces, web and Qt *well, OK*.
- Beamline production branches are **far apart**, requiring maintaining a permanent branch for each
 - Impossible to transfer or compare code using git repository operations

- Improvements must be ported from version to version by copy-and-diff. Hard to keep consistency and avoid errors.
- Be *nice* if we could work off a repository branch.

- Introduction the GΦL Workflow
- Development and deployment
 - EMBL-HH P14 collaboration
 - ESRF MASSIF1 collaboration
 - Centring issues

- Workflow installed and under full local control, in production use by external power users
- Improving user interface from feed-back.
- Contributing to collaboration with Gleb Bourenkov and Ashwin Chari on acquiring highest-quality data. Collaboration also includes:
 - Acquisition at 26.7 keV

- Eiger2 16M CdTe detector
- Width-adjustable top-hat beam
- Ultra-high-quality crystals

UI – starting panel

	GPhL Workflows	
	Workflow type	
	TwoWavelengthMAD <	
	Data location	
	Folder:	
	/rbfogb/calc/mxcube_data/visitor/idtest0/eb1/20220516/BAW/_DATA	
	Integrical Chine Back Visitor Autosco Jen 1/20220510/1000-DATA	
	File name: emulate-4j8p_1_#####.cbf.gz Browse	
Select indexing	Prefix emulate-4j8p	
solution and	Run number 1	
strategy symmetry	Compress data	
Strategy Symmetry	Acquisition	
	Crystal system :	
Enforce input	Space group : P41212	Determine dose
symmetry in	Rel. radiation sensitivity	budget and
indeving calculation	Characterisation strategy : Char_6_5_multitrigger	transmission
	Signal decay limit (%) 25	uansinissi011

GΦL

GDD Global Phasing Limited

UI - Characterisation

*	GPhL	Workflow	<i>N</i> param	eters	(on n	nxcub	e2 dev	qt4 qphl6	5)		~ X
Data collection plan			L		•			1 _51			
Characterisation st	trategy										
======================================	6.0° 11.0°,	kappa_phi=	22.0°, phi= phi= phi= phi= phi=	0.0°, 45.0°, 90.0°, 135.0°, 180.0°,	sweep w sweep w sweep w sweep w sweep w	ridth= ridth= ridth= ridth= ridth=	1.2° 1.2° 1.2° 1.2° 1.2°				
Parameters											
Transmission (%)		100.0000	Detector res	olution (A)		1.65	Characteri	sation beam ener	rgy (keV)	2	5.0000
Charcterisation dose ((MCy)	0.3773	Total dose bu	idget (MGy)		7.546	6 Number of	snapshots	2		
Exposure Time (s)		0.098918	Experiment	duration (s)		2.4	4				
Oscillation range	0.1		Rotation spe	ed (°/s)		2.	5				
										Continue	Abort
Characte You wou	erisatio Id pro	on dose bably wa	defaults int to re	to 5% set thi	of b s valı	udget ue her	(config e.	urable)			

UI – Indexing solution

	L CH	ATTICE- ARACTER	BRAVAIS- LATTICE	QUALITY OF FIT	UNIT CELL a	b CONST	ANTS (A c	NGSTRO alpha	EM & D beta)EGREES) gamma
1	*	44	aP	0.0	56.3	56.3	102.4	90.0	90.0	90.0
2	*	31	aP	0.0	56.3	56.3	102.4	90.0	90.0	90.0
3	*	14	mC	0.1	79.6	79.6	102.4	90.0	90.0	90.0
4	*	33	mP	0.1	56.3	56.3	102.4	90.0	90.0	90.0
5	*	35	mP	0.1	56.3	56.3	102.4	90.0	90.0	90.0
6	*	10	mC	0.1	79.6	79.6	102.4	90.0	90.0	90.0
7	*	34	mP	0.1	56.3	102.4	56.3	90.0	90.0	90.0
8	*	32	oP	0.1	56.3	56.3	102.4	90.0	90.0	90.0
9	*	13	oC	0.2	79.6	79.6	102.4	90.0	90.0	90.0
10	*	11	tP	0.2	56.3	56.3	102.4	90.0	90.0	90.0
11		37	mC	250.0	212.4	56.3	56.3	90.0	90.0	74.6
r am Det Mai	iete	e rs or resolut quisition e	ion (A) energy (keV)		1.9 20.0000	Prior sp Prior po	bace gro bint grou	up [ıp [P41212
Stra	ateg	ıy variant		full 🔻		Prior cr	ystal sy	stem		
	Use	cell and s	symmetry for	processing	?					
									Continu	ue Abort

Global Phasing Limited

Adjust resolution and energy before strategy calculation

Space group from indexing solution and prior information

UI - Acquisition

Global Phasing Limited OI ACQUISITION Data collection plan TwoWavelengthMAD strategy, variant 'full' Experiment length: 2 * 540.0° Sweep : kappa= 0.0°, kappa_phi= 0.0°, phi= -130.0°, sweep width= 180.0° Sweep : kappa= 101.1°, kappa_phi= 149.7°, phi= -30.7°, sweep width= 360.0°

Parameters

Transmission (%) 50	Detector resolution (A) 1.900	Peak beam energy (keV) 20.0000
Total dose (MGy) 46.5062	Total dose budget (MGy) 10.0090	Remote beam energy (keV) 20.0100
Exposure Time (s) 0.0810000	Experiment duration (s) 874.8	Number of snapshots 2
Oscillation range 0.1	Rotation speed (°/s) 1.2	Re-centre when orientation changes
	Wedge width (deg)	

Continue

Abort

Dose adjusts automatically when transmission, exposure time, or oscillation range change. Dose-over-budget highlighted.

GODE Global Phasing Limited

UI – Acquisition 2

Data collection plan					
TwoWavelengthMAD strategy, variant	'full'				
Experiment length: 2 * 540.0°					
Sweep : kappa= 0.0°, kappa	_phi= 0.0°, phi= -1	30.0°, sweep widt	h= 180.0°		
Sweep : kappa= 101.1°, kappa	_phi= 149.7°, phi= -	30.7°, sweep widt	h= 360.0°		
Parameters					
Transmission (%) 18.9263	Detector resolution (A)	1.900	Peak beam energy (keV)	20.0000	Ī.
Total dose (MGy) 9	Total dose budget (MGy)	10.0090	Remote beam energy (keV)	20.0100	Ē.
Exposure Time (s) 0.040000	Experiment duration (s)	874.8	Number of snapshots	2 💌	
Oscillation range 0.1 💌	Rotation speed (°/s)	1.2	Re-centre when orientation	changes	-
	Wedge width (deg)	15			

Reset to max transmission and default exposure time when dose is changed.

Continue

Abort

- Introduction the GΦL Workflow
- Development and deployment
 - EMBL-HH P14 collaboration
 - ESRF MASSIF1 collaboration
 - Centring issues

Integrating workflow in MXCuBE3

- Refactoring workflow for MXCuBE3 / MASSIF-1 and improved interface
- Acquisition tested in full-auto mock mode; beginning to test on MASSIF1

Global Phasing Limited

Learning JavaScript ;-)

Special thanks to Marcus Oscarsson

GPL Acquisition Workflo	W	×
Path: /mnt/scratch/rhfogh/mxcu /RAW_DATA/3n0s/ Filename:	be3_data/mxcube3test/inhouse/idtest0/20211020	
Subdirectory	3n0s/	
Prefix	3n0s	
Workflow Strategy	Native data collection	~
	Run Now Add to Queu	e

MXCuBE3 interface popup for workflow

 $G\Phi L$ Global Phasing LimitedFully automatic execution on MASSIF-1

- MASSIF-1 workflow drives GPL workflow
 - GΦL workflow enqueued on MXCuBE queue
 - No UI all parameters must be passed at start
 - Automatic selection of indexing solution
 - Automatic transmission determination
- Characterisation done at MASSIF-1 level
 - Use multiple thin-wedge characterisation (4 x 1.0 $^{\circ}$ as 0.1 $^{\circ}$ images) for greater robustness, as in GPL workflow
 - MASSIF-1 does characterisation and first XDS analysis
 - GPL skips characterisation and analyses SPOT.XDS file
- X-ray centring (precise, fully automatic) for each orientation
 - Implemented through an EDNA workflow task
 - GPL calls centring through new MXCuBE queue entry

- Introduction the GΦL Workflow
- Development and deployment
 - EMBL-HH P14 collaboration
 - ESRF MASSIF1 collaboration
 - Centring issues

$G\Phi L_{\text{Global Phasing Limited}} Centring \ for \ multi-orientation \ experiments$

- Each sweep uses different κ, ϕ settings of the goniostat
- Sample and instrumentation factors limit the recentring precision to no better than 10-20µm, even after careful goniostat calibration
- 'Top-up' recentring is therefore required for each orientation to ensure that the crystal remains in the beam
- Calculated pre-centring should allow any auto-centring step to be short, by requiring only a very small search grid

- Once centred at one orientation, it should be possible to calculate (approximate) centring at another orientation.
- GPL release has routines for pre-calculating centring positions
 - Workflows for translational and diffractometer calibration
 - STOP PRESS: MASSIF1 has automated translational calibration using ball-tipped tungsten pin.
 Recentring shown to work well.
- EMBL P14 has its own recentring routines
 - "Part of the MXCuBE code for ten years now"
- WIP: MXCuBE-wide recentring code

- New AbstractXrayCentring Hardware object, with MockXrayCentring, XrayCentringQueueEntry. etc.
- Implemented at MASSIF1 using calls to EDNA centring workflow
 - Initial tests done
- 'Top-up' centring for additional orientations (e.g. for $G\Phi L$ workflow) should be a lot faster than the initial centring
 - Provided we can do reliable recentring calculations
- WIP: MXCuBE-wide automatic (X-ray) centring HardwareObject?

GOL Global Phasing Limited

Acknowledgements

- Global Phasing colleagues
 - Peter Keller
 - Rasmus Fogh
 - Wlodek Paciorek
 - Claus Flensburg
 - Clemens Vonrhein
 - Andrew Sharff
 - Ian Tickle
 - Gerard Bricogne
- Diamond Light Source
 - Funding under Collaboration Agreement COL0044 re. I23
 - Armin Wagner, Kamel El Omari
- EMBL-Grenoble
 - Josan Marquez, Irina Cornaciu

- EMBL-Hamburg / PETRA III
 - Gleb Bourenkov
- Max Planck Institute, Göttingen
 - Ashwin Chari
- ESRF MASSIF-1
 - Olof Svensson, Matthew Bowler, Marcus Oscarsson
- ALBA synchrotron
 - Roeland Boer, Jordi Andreu
- SOLEIL
 - Martin Savko, Bill Shephard
- The MXCuBE Collaboration
 - 'All for one and one for all'
- The Global Phasing Consortium
 - Funding and much more