
HANDS ON SESSION
M. Eguiraun

14th March 2019

Outline

● Hardware Repository

● MXCuBE

● Exercises

�2

MXCuBE

�3

● Macromolecular Xtallography Customized Beamline
Environment
● Started in 2005 at ESRF
● Beamline control and data acquisition platform

for running MX experiments

● Supported by the following partners: ESRF, Soleil,
MAX IV, HZB, EMBL, Global Phasing Ltd, DESY,
ALBA (LNLS)
● Common solution for scientist
● Already tested software & builtin experience
● Quick setup

MXCuBE - Main Features

�4

● Customizable interface for each beamline/facility (PyQt bricks,
web)

● Hide the complexity of the Hardware to the user (and to the
developers…) thanks to the usage of the HardwareObjects

● Reuse of existing code for different beamlines
● same or similar hardware
● same or similar experimental procedures

● A huge builtin experience (many years + many people + many
beamlines)

● Currently QT and Web versions

MXCuBE - HardwareRepository

�5

● Hardware Abstraction Layer
● It acts as a container/Pool of single python objects (called Hardware

Objects)
● The information necessary for a hardware object to operate a

physical device. Supported protocols: Tango, Spec, Exporter,
Sardana, EPICS

REST API Channels/Commands

Sample Changer
HardwareObject

Diffractometer
HardwareObject

Equipment HardwareObject

LIMS HardwareObject

HardwareRepository

XXX HardwareObject

Base HardwareObject API

Procedure HardwareObject

Tango Channels/Commands

Custom Channels/Commands

TCP Channels/Commands

EPICS Channels/Commands

MXCuBE - HardwareObjects

�6

● A HO is not only hardware! Procedures/sequences etc
● Link between devices and the graphical interface
● Configured through xml files
● emitting signals to others HOs, graphical elements
● Hardware mockups available

<device class="MicrodiffMotor">
 <username>Omega</username>
 <exporter_address>130.235.94.124:9001</exporter_address>
 <motor_name>Omega</motor_name>
 <unit>1e-3</unit>
</device>

udiff_omega.xml

class MicrodiffMotor(Device):

def init(self):
self.position_attr = self.addChannel({"type":"exporter", "name":"position" }, self.motor_name)

def getPosition(self):
return self.position_attr.getValue()

def move(self, absolutePosition)
self.position_attr.setValue(absolutePosition)

MicrodiffMotor.py

MXCuBE - HardwareObjects

�7

<!-- Example beamline setup file -->

<object class="BeamlineSetup" role="BeamlineSetup">
 <!-- Objects directly associatd with hardware -->
 <object href="/transmission-mockup" role="transmission"/>
 <object href="/minidiff" role="diffractometer"/>
 <object href="/cats" role="sample_changer"/>
 <object href="/spec_mxCuBE/res" role="resolution"/>

 <!-- Software (abstract) concepts -->
 <object href="/shape-history" role="shape_history"/>
 <object href="/session" role="session"/>
 <object href="/lims" role="lims_client"/>
 <object href="/edna_config" role="data_analysis"/>
 <!--<object href="/workflow-mockup" role="workflow"/> -->

 <!-- Procedures and routines -->
 <object href="/energyscan" role="energy"/>
 <object href="/mxcollect" role="collect"/>

 <!-- Is it possible to change the beam wavelentgh.
 Should perhaps be associated with the diffractometer -->
 <tunable_wavelength>True</tunable_wavelength>

 <!-- Disables or enables the number of passes input box, used
 for acquisitions.-->
 <disable_num_passes>False</disable_num_passes>

 <!-- Should be moved to a detector object in the future -->
 <detector>
 <manufacturer>MAR</manufacturer>
 <type>marccd</type>
 <model>marmosaic</model>
 <px>0.07324</px>
 <py>0.07324</py>
 <cansum>no</cansum>
 <has_shutterless>False</has_shutterless>
 </detector>

 <!-- Default values for an acquisition -->
 <default_acquisition_values>
 <exposure_time>10</exposure_time>
 <start_angle>0.0</start_angle>
 <range>1</range>
 <number_of_passes>1</number_of_passes>
 <start_image_number>1</start_image_number>
 <run_number>1</run_number>
 <overlap>0</overlap>
 <number_of_images>1</number_of_images>
 <detector_mode>1</detector_mode>
 </default_acquisition

 <!-- Default values for a characterization -->
 <default_characterisation_values>
 <exposure_time>5</exposure_time>
 <start_angle>0.0</start_angle>
 <range>1</range>
 <number_of_passes>1</number_of_passes>
 <start_image_number>1</start_image_number>
 <run_number>1</run_number>
 <overlap>0</overlap>
 <number_of_images>1</number_of_images>
 <detector_mode>1</detector_mode>
 </default_characterisation_values>
 </object>

MXCuBE - HardwareObjects

�8

● Important HO
● Collect, Diffractometer,
● This is the main entry point: BeamlineSetup

● Folder structure…
● Specific folder for each facility
● Try to inherit as much as possible

MXCuBE - HardwareObjects

�9

● Inheritance example

BIOMAXCollect

AbstractCollect

HardwareObjectNode

HardwareObject

CommandContainer

class BIOMAXCollect(AbstractCollect, HardwareObject):

MXCuBE - HardwareObjects

from HardwareRepository import HardwareRepository as hwr
hwr_dir = '../test/HardwareObjectsMockup.xml/'
hwr = hwr.HardwareRepository(hwr_dir)
hwr.connect()
dtox = hwr.getHardwareObject(‘dtox’)
dtox.getPosition()
dtox.move(100)
dtox.getPosition()

● Let’s play a bit

MXCuBE 3

�11

● Beamline control and data acquisition as web application
● Modern technologies
● Future easier integration and maintenance
● Remote access in a more natural way
● Reuse existing HardwareObjects
● Challenges:
● Refactor existing code, remove dependencies
● New design for the user interface
● Decoupling logic and interface: any client possible

https://github.com/mxcube/mxcube3

MXCuBE 3

�12

● Under development
● kickoff meeting in September 2015
● v 3.0.2

● In production in MAX IV, ESRF, Elettra (Roberto?)
● Tests in Soleil?
● Still issues few to be solved

https://github.com/mxcube/mxcube3

MXCuBE 3

�13

● REST API backend
● Websockets for forwarding events (SocketIO)
● Thin layer for adapting HO and mxcube3 communication

�14

Backend
● Python Flask microwebframework:
● web server made simple
● extensions (database, login, …)
● easily adaptable to your needs while scalable
● big community

● http request API: rest like (but probably not fully rest)

● an url for each function
● Simple to add new features without changing existing

ones
● Flask socketio for sending HO messages
● server-client bi-directional communication, websocket

based
● Reuse the existing Hardware Repository

Http requests
● API for the calls from client to server (GET, PUT, POST, DELETE)

● Decoupling the server and the client
● Should be easy to understand by the client

➡ (http://example.com/queue/4/12/execute)

�15

Adding new devices

�16

● Existing HO framework makes easy the addition of new
devices

● Clear decoupling
● Steps (roughly):
● Write your new Hardware Object
● Configure it (xml file, specific address, range, etc.)
● Does the current http api support the new HO?
● if not: add new routes

● Tell the client how to make use of the api

�17

Frontend REACT
● Javascript/React library (Facebook)

● Only for the user interface (the V in MVC)

● Virtual html DOM kept as internal state
● Different components programmed independently

● Widgets like in traditional UI development
● Called components

● Reusing existing code when the layout changes
● Express the UI in a markup language called JSX (~html +

javascript)

�18

Frontend REDUX
● Redux application architecture/pattern
● Predictable state container for JavaScript apps …
● Unidirectional data flow, easy debugging
● Changes on the internal state in a single place

Layout
● A main objetive was identified
● Improve the user experience

● And for that it is useful to
● Have a clean interface
● Use modern web technologies
● Learn current usage and feedback

�19

�20

Layout - first sketch

● Experiment configuration in a
batch like mode
● All available samples

● Experiment management for each sample
● centring mechanism
● should also be automatic and

transparent for the user

Transitions between views to be defined

MAXIV-ESRF Sep. 2015

�21

Layout - Today

�22

Layout - Today

�23

DataCollections

�24

DataCollections

�25

DataCollections

�26

DataCollections

�27

DataCollections

�28

DataCollections

�29

DataCollections

�30

Sample Changer

�31

Remote Operation
● Master/Slave mode
● Master is a local user/beamline staff
● Give/ask for control
● slave cannot drive the beamline

● Screen mirroring
● In user operation at ESRF

● Demo

�32

LIMS integration
● Our LIMS is Ispyb
● The user configures the samples in Ispyb
● Mxcube retrieves the samples info (name, location in the

SC, etc.)
● Data collection results are posted to Ispyb (beamline

parameters, data collection info, file paths…)
● Auto triggering of data analysis (EDNA) performed by

mxcube
● feedback of data collection proposal (crystal

characterisation) (diff plan)
● Results are displayed in the interface

�33

Simulated beamline
● Extensive set on mockups equipment
● Diffratometer
● Detector
● Motors/movables
● Lims interface
● …

● (almost) all the functionality of the interface can be tested
without beamline (to certain degree)

● The xml files defines which components to use
● You can mix real and simulated equipment

MXCuBE 3 - demo

�34

http://localhost:8090

http://localhost:8090

MXCuBE3 People
Team:

MAX IV: M. Eguiraun, J. Nan, U. Muller, A. Gonzalez
ESRF: M. Oscarsson, A. Beteva, D. de Sanctis
Do not forget: M. Guijarro, F. Bolmsten, A. Milan-Otero, M.
Thunissen, …

Supported by:
MXCuBE collaboration
MAX IV MX and KITS teams
ESRF BCU team

Publications:
 MXCuBE 3 web application, on the way to next generation experiment
control: NOBUGS16
 Bringing MX experiments to the web MXCuBE 3: ICALEPCS17
 MXCuBE 3 web application for MX experiment control; elease update and
user experience: NOBUGS18�35

Thanks for your attention!

�36

Exercises

�37

�38

Environment (docker)
1. Getting mxcube: (put it somewhere you like, do not use you existing mxcube3 folder)
• git clone https://github.com/meguiraun/mxcube3.git
• cd mxcube3
• git checkout -b v3.0.1 origin/v3.0.1
• cd mxcube3
• git clone https://github.com/meguiraun/HardwareRepository.git
• cd HardwareRepository
• git checkout -b 2.2 origin/2.2

2. Running: change the firt part of the -v to where you downloaded mxcube3 in the step
above

3. docker pull mikeleguiraun/mxcube:mxcube3_workshop
• Terminal1: docker run -v <YOUR_PATH_TO_MXCUBE>:/mxcube/mxcube3 -p 8081:8081 -

p 8090:8090 --name mxcube3_workshop mikeleguiraun/mxcube:mxcube3_workshop
• Terminal2: docker exec -it mxcube3_workshop python mxcube3-server -w True -r test/

HardwareObjectsMockup.xml
• Terminal3: docker exec -it mxcube3_workshop npm install -> this is only needed once, it

takes a while
• Terminal3: docker exec -it mxcube3_workshop npm start (leave this running all the time)

3. go to localhost:8090, username: idtest0, whatever password

For getting into the container: docker exec -it mxcube3_workshop /bin/bash

8081: backend server
8090: web pack dev server (UI)

https://github.com/meguiraun/mxcube3.git
https://github.com/meguiraun/HardwareRepository.git

�39

Environment (native)
1. Getting mxcube: (put it somewhere you like, do not use you existing mxcube3 folder)
• git clone https://github.com/mxcube/mxcube3.git
• git checkout -b v3.0.1 origin/v3.0.1
• cd mxcube3
• git clone https://github.com/mxcube/HardwareRepository.git
• cd HardwareRepository
• git checkout -b 2.2 origin/2.2

2. Running:
1. Install conda: https://docs.conda.io/en/latest/miniconda.html
2. conda create -n mxcube3 python=2.7
3. conda activate mxcube3
4. Install and run redis (check for your platform)
5. pip install -r requirements.txt (from the requirements.txt file in mxcube3 main folder)
6. python mxcube3-server -w True -r test/HardwareObjectsMockup.xml

8. Install NODE from https://nodejs.org/en/
9. In mxcube3 folder
1. npm install
2. npm start

https://github.com/mxcube/mxcube3.git
https://github.com/mxcube/HardwareRepository.git
https://docs.conda.io/en/latest/miniconda.html
https://nodejs.org/en/

�40

Exercise 1
A new hardware object in the interface

• On the hardware repository folder (repo):
• git checkout -b temp_controller origin/temp_controller_template
• New TemperatureController.py file

• Finish it with random temperature value
• New xml configuration file for it

• Mxcube 3 folder:
• git checkout -b temp_controller origin/temp_controller_template
• Several new files, check and finish them:

• Load the previous hwobj (beamline-setup.xm)
• First: API endpoint (new url for GET)

• Test calling the url in a browser
• React component: mxcube3/ui/components/TemperatureController/TemperatureController.jsx
• Temperature actions and reducers
• Forward temperature change events to the UI:

• mxcube3/routes/signals.py
• mxcube3/ui/serverIO.js

from HardwareRepository import HardwareRepository as hwr
hwr_dir = '../test/HardwareObjectsMockup.xml/'
hwr = hwr.HardwareRepository(hwr_dir)
hwr.connect()
ctrl = hwr.getHardwareObject(‘temp_controller’)

Remember

https://github.com/meguiraun/mxcube3/commit/8043a77491a0999a03cfb4359b28e58772b4575c#diff-c5b05526430bd2b269afa30a2b4610f7

�41

Exercise 2
Modify UI component

The current sample changer indicator in the data collection view only displays the state, change it so that you can
power on and off the sample changer.

• On the mxcube3 folder
• git checkout -b sample_changer_switch_template origin/sample_changer_switch_template
• InOutSwitch2 does something very similar… just saying…
• The sample changer maintenance hwobj already knows how to power it

