MXCuBE status at SOLEIL

Martin Savko
savko@synchrotron-soleil.fr

Proxima 1

Source: U20 in vacuum undulator
Focussing: KB, CRL
Tunable: 5.5-15.5 keV
Flux: 2.0e12 ph/s @ 500mA @ 12.65 keV

Beam size: 20x40 $\mu \mathrm{m}$
Detector: Eiger X 16M
Goniometer: SmarGon
Sample Changer: CATS
MXCuBE: Qt4 v 2.3

Proxima 2

Source: U24 in vacuum undulator
Focussing: KB + horizontal PFM
Tunable: 5.5-18.5 keV
Flux: 1.6e12 ph/s @ 500mA @
12.65keV

Beam size: $5 \times 10 \mu \mathrm{~m}$
Detector: Eiger X 9M
Goniometer: MD2 with MK3
Sample Changer: CATS
MXCuBE: Qt3 v 2.1 (Qt4 v2.3)

Detectors

- Eiger X 9M on Proxima 2
- In operation since 2015
- Eiger 16M and Pilatus 6M on Proxima 1
- Pilatus In user operation since mid 2011
- Passing to Eiger X 16M October 2018

MXCuBE development

- Following master branch
- Discipline to port back the local developments (bunch awaiting pull request)

Multiaxis goniometry

- Smargon goniometer on Proxima 1 (SmarAct)
- SmarAxis Tango Device Server (C++) developed at SOLEIL

- Minikappa MK3 on Proxima 2 (Arinax)
- JLIB software accessed through Tango Device server

Sample changers

- CATS robots on both beamlines. Control via PyCats Tango Device Server
- Mature integration
- Automated resolution of occasional problems
- Failure rate below 1 per 1000

New software for optical sample segmentation

- Segmenting out pin, stem and loop
- Based on analysis of series of images collected as function of omega axis
- Speed: 4 seconds acquisition +4 seconds analysis
- Loop bounding box in all orientation
- Chaining x-ray scan mesh with appropriate geometric parameters

Getting more information from mesh scans

- Optical segmentation of the loop
- Mesh scan at three orientations
- Determine sample size and shape
- Determine center curve
- -> spread the dose

filtered z

best_of_z, min_spots=4, threshold=0.5

best_of_z

best of z scaled to optical image

Minikappa calibration

- Using automated optical alignment and arbitrary sample (~3600 combinations of kappa and phi)
- Considering alignment axes separately

Model - circle moving on another circle

offset $=$ center + amplitude*sin(k * phi - phase);
center, amplitude and phase are functions of kappa, k is 1 for centring motors (CentringX and CentringY) and 0.5 for horizontal alignment motor (AlignmentY)

Calibration: observation vs. model as function of κ and φ combinations

y centers

y amplitudes

y phases

cy centers

cy amplitudes

cy phases

cy centers

cx amplitudes

Omega axis position variations

High number and accuracy of acquired data points allows for close inspection of omega axis position variations as a function of κ and φ.

AlignmentZ mean position as function of κ

AlignmentZ mean position as function of κ

AlignmentZ position as function of φ

AlignmentZ position as function of φ

AlignmentZ mean position as function of φ

AlignmentZ position as function of κ and φ combinations

Omega axis position variations

- Optical alignment sufficiently accurate to reveal fine structure in Omega axis positioning due to mechanical imperfections of kappa and phi axes.
- step function of ~ 7 um at kappa 103°
- gravitational sag of ~ 5 um at specific phi positions: $115^{\circ}, 145^{\circ}, 295^{\circ}\left(115^{\circ}+\right.$ 180°) and $325^{\circ}\left(145^{\circ}+180^{\circ}\right)$

Model accuracy

axis name	Mean absolute error $[\mu \mathrm{m}]$	Median absolute error $[\mu \mathrm{m}]$	Standard deviation $[\mu \mathrm{m}]$
AlignmentZ	1.1	0.8	1.5
AlignmentY	14.1	11.5	19.3
CentringX	24.0	22.9	29.8
CentringY	20.5	18.7	26.3

Acknowledgements

- Lidia Ciccone
- Pierre Legrand
- Bill Shepard
- Leo Chavas
- Gavin Fox
- Damien Jeangerard
- Serena Sirigu
- Tatiana Isabet
- Patrick Gourhant

