MXCuBE status at SOLEIL

Martin Savko savko@synchrotron-soleil.fr

Joint ISPyB and MXCuBE developers meeting at Trieste

11 September 2018

Proxima 1

Source: U20 in vacuum undulator

Focussing: KB, CRL

Tunable: 5.5 - 15.5 keV

Flux: 2.0e12 ph/s @ 500mA @ 12.65keV

Beam size: 20x40 µm

Detector: Eiger X 16M

Goniometer: SmarGon

Sample Changer: CATS

MXCuBE: **Qt4 v 2.3**

Proxima 2

Source: U24 in vacuum undulator

Focussing: KB + horizontal PFM

Tunable: 5.5 - 18.5 keV

Flux: 1.6e12 ph/s @ 500mA @ 12.65keV

Beam size: 5x10 µm

Detector: Eiger X 9M

Goniometer: MD2 with MK3

Sample Changer: CATS

MXCuBE: Qt3 v 2.1 (Qt4 v2.3)

Detectors

- Eiger X 9M on Proxima 2
 - \circ In operation since 2015
- Eiger 16M and Pilatus 6M on Proxima 1
 - Pilatus In user operation since mid 2011
 - Passing to Eiger X 16M October 2018

MXCuBE development

- Following master branch
- Discipline to port back the local developments (bunch awaiting pull request)

Multiaxis goniometry

- Smargon goniometer on Proxima 1 (SmarAct)
 - SmarAxis Tango Device Server (C++) developed at SOLEIL

- Minikappa MK3 on Proxima 2 (Arinax)
 - JLIB software accessed through Tango Device server

Sample changers

- CATS robots on both beamlines. Control via PyCats Tango Device Server
- Mature integration
 - Automated resolution of occasional problems
 - Failure rate below 1 per 1000

New software for optical sample segmentation

- Segmenting out pin, stem and loop
 - Based on analysis of series of images collected as function of omega axis
 - Speed: 4 seconds acquisition + 4 seconds analysis
- Loop bounding box in all orientation
- Chaining x-ray scan mesh with appropriate geometric parameters

Getting more information from mesh scans

- Optical segmentation of the loop
- Mesh scan at three orientations
- Determine sample size and shape
- Determine center curve
- -> spread the dose

Minikappa calibration

- Using automated optical alignment and arbitrary sample (~3600 combinations of kappa and phi)
- Considering alignment axes separately

Model - circle moving on another circle

offset = center + amplitude*sin(k * phi - phase); center, amplitude and phase are functions of kappa, k is 1 for centring motors (CentringX and CentringY) and 0.5 for horizontal alignment motor (AlignmentY)

Calibration: observation vs. model as function of κ and φ combinations

Omega axis position variations

High number and accuracy of acquired data points allows for close inspection of omega axis position variations as a function of κ and φ .

AlignmentZ position as function of κ and φ combinations

AlignmentZ position as function of φ

AlignmentZ position as function of κ and φ combinations

Omega axis position variations

- Optical alignment sufficiently accurate to reveal fine structure in Omega axis positioning due to mechanical imperfections of kappa and phi axes.
- step function of ~7 um at kappa 103°
- gravitational sag of ~5 um at specific phi positions: 115°, 145°, 295° (115° + 180°) and 325° (145° + 180°)

Model accuracy

axis name	Mean absolute error [µm]	Median absolute error [µm]	Standard deviation [µm]
AlignmentZ	1.1	0.8	1.5
AlignmentY	14.1	11.5	19.3
CentringX	24.0	22.9	29.8
CentringY	20.5	18.7	26.3

Acknowledgements

- Lidia Ciccone
- Pierre Legrand
- Bill Shepard
- Leo Chavas
- Gavin Fox
- Damien Jeangerard
- Serena Sirigu
- Tatiana Isabet
- Patrick Gourhant

- Bixente Rey
- Olof Svensson