

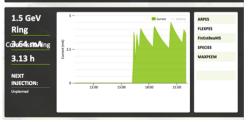
MXCuBE @ MAX IV: Status Report

Johan Unge

January 31, 2018

1 Linac 2 Rings 15 beamlines

Beamline		Accelerator	Technique		
ARPES	7	1.5 GeV	Angle resolved photoelectron spectroscopy (ARPES) including spin resolution (SPIN-ARPES) for detailed studies of the electronic structure of solids.		
Balder ★	3	3.0 GeV	Hard X-ray absorption and emission spectroscopy (XAS, XES) and X-ray diffraction (XRD) with emphasis on in-situ and time resolved studies and on bio and environmental related studies.		
BioMAX	4	3.0 GeV	Macromolecular crystallography with a high degree of automation and remote access.		
CoSAXS	12	3.0 GeV	Small and wide angle X-ray scattering (SAXS, WAXS) and coherent techniques for soft matter and bio materials.		
DanMAX	14	3.0 GeV	Powder diffraction and tomographic imaging primarily of hard (energy) materials.		
FemtoMAX	1	Linac	Time-resolved hard X-ray scattering and spectroscopy methods for studies of ultrafast processes		
FinEstBeaMS	8	1.5 GeV	Electron spectroscopies and luminescence methods for studies of low density matter and solids.		
FlexPES	11	1.5 GeV	Soft X-ray spectroscopies for studies of low density matter and solids.		
	6	3.0 GeV	Near ambient pressure photoelectron spectroscopy on solids and liquids.		
MAXPEEM	10	1.5 GeV	Aberration corrected photoelectron microscopy for investigation of surfaces and interfaces.		
NanoMAX 🔶	2	3.0 GeV	Imaging with spectroscopic and structural contrast techniques and nanometre resolution.		
SoftiMAX	13	3.0 GeV	Scanning transmission X-ray microscopy and coherent imaging methods.		
SPECIES	9	1.5 GeV	Resonant inelastic X-ray scattering (RIXS) with high resolving power and near ambient pressure photoemission.		
VERITAS	5	3.0 GeV	Resonant inelastic X-ray scattering (RIXS) with unique resolving power and high spatial resolution.		



ίπ

3-#

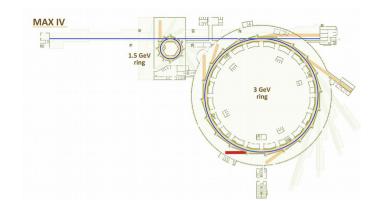
8

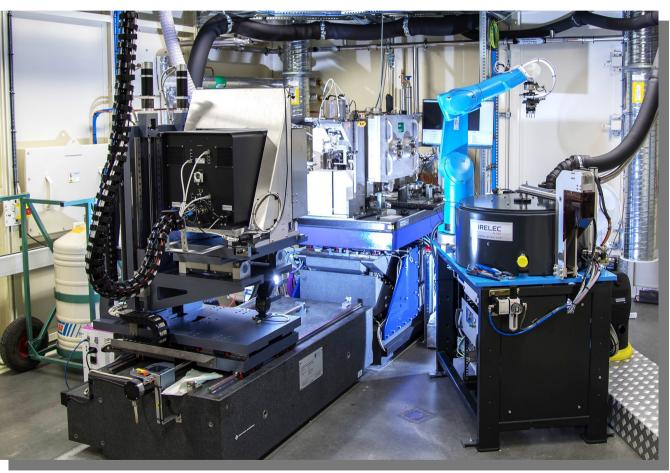
111.68

Linac:

Injector 1.5 & 3 GeV & SPF Injects both rings & delivers light to FemtoMAX

- <u>3 GeV:</u>
- 200 mA, >5 Ah
- ≈ (340⊡30) pm·rad
- ≈ 8.5 mA single bunch
- Delivers light to users

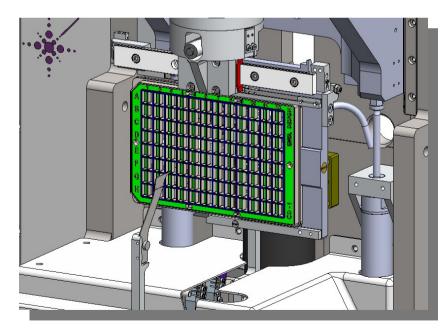

1.5 GeV: < 200 mA Commissioning



BioMAX experimental station

Experimental environment

- MD3 micro-diffractometer
- Eiger 16M hybrid pixel detector
- ISARA sample changer
- HCLab humidifier
- Beam Condition Unit incl. XBPM
- Amptek fluorescence detector

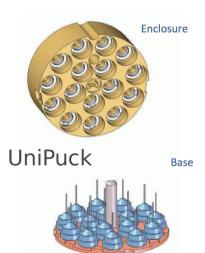

BioMAX experimental station

Goniometry

MD3 diffractometer:

- Ultra precise Omega-axis
 - Sphere-of-confusion r=100 nm
 - Max. speed 800 deg/sec
- MK3 Mini-kappa goniometer
- Improved on-axis-microscope
- Crystallization plate holder

MD3 plate holder

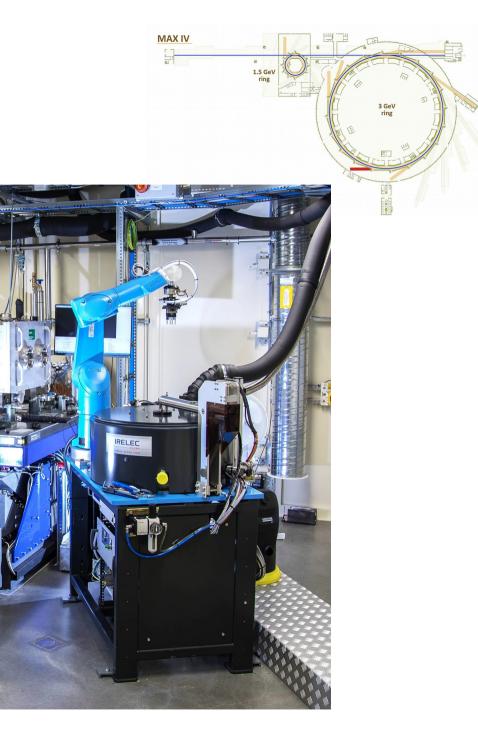


MD3 at BioMAX experimental hutch

Sample changer

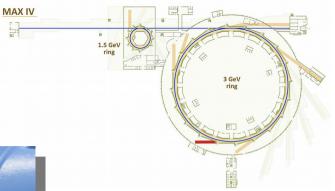
ISARA sample changer:

- Dewar capacity
 - 100 samples in SPINE pucks
 - 304 samples in UniPuck
- 4 crystallization plates
- 18 sec sample transfer time



SPINEPuck

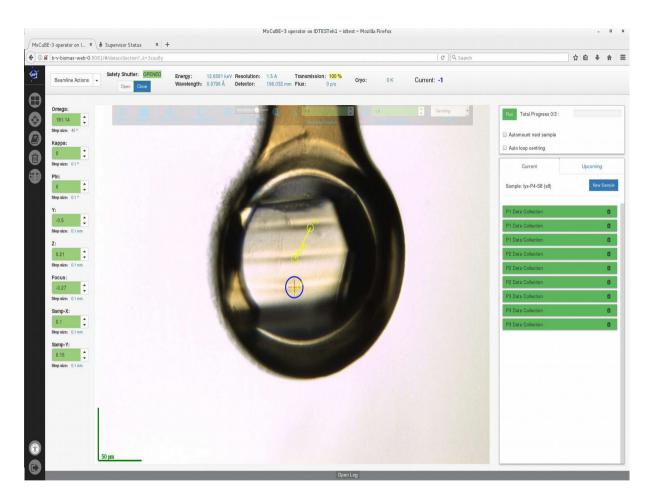
Status


- Ice formation issues with new design
- Currently Unipuck is working
- Integrated into mxcube3, operation, maintenance page and hwobj

ISARA sample changer (IRELEC)

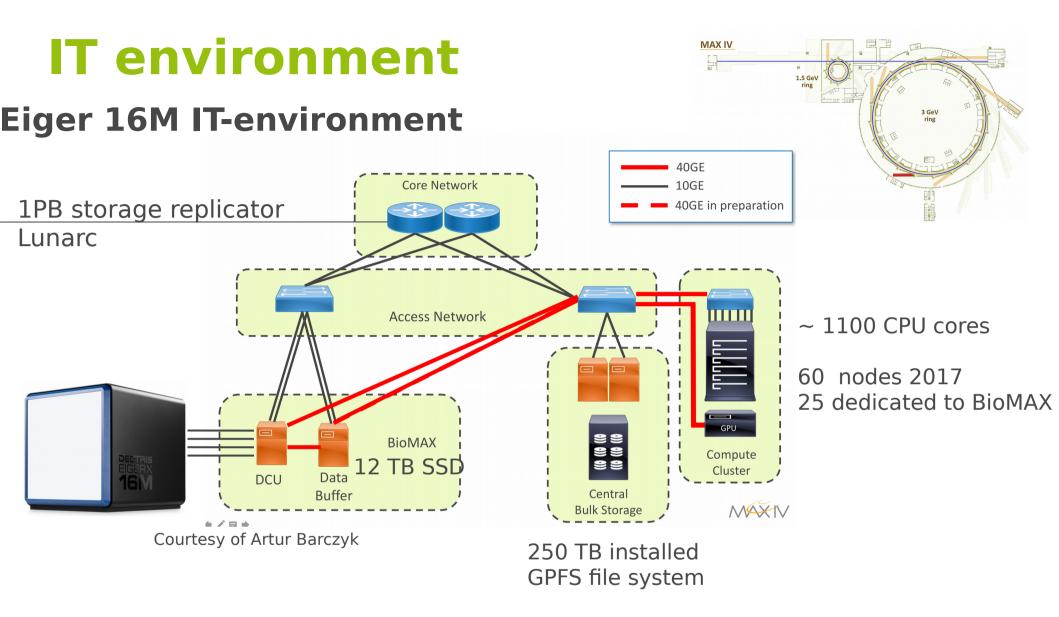
HCLab -Room temperature

First Si chip operation at BioMAX, (B. Vestergaard, UC)



HClab facility operational

MXCuBE3


- Current Status, major features
 - Sample Centering
 - Standard Oscillation
 - Characterization
 - Helical Scan
 - Sample Changer
 - ISARA adaptation for Tango device and HWO
 - Mesh Scan
 - In Situ
- In progress and todo
 - Stability maturation
 - XRF, XANES
 - Parallel processing for spot finding for MESH scan
 - ISPyB and SDM integration

MXCuBE3 data collection view

- Advantage Joint collaboration with ESRF
- Challenges

Software stability, user-friendliness and integration with of various hardware + software

- Alternative data retrieval via Globus (www.globus.org)
- DUO (proposal management) in place and will be used soon
- Account and data management system (SDM) \rightarrow talk by Fredrik

Data reduction and performance

- Three pipelines currently used
 - fast_dp, autoPROC, BioMAX_Pipeline
- System to install all MX software on cluster, PreSTO, collaboration with National Supercomputer Centre and Lunarc.
 - Thinlinc to create simple interface to cluster
 - XDS and central GPFS file system? XDS makes many small I/O operations...testing alternatives

MAX IV, GPFS system (1)	Lunarc, Same blades type (1)	4 Nodes, NFS mount 8 XDS-jobs 24 processes (2)	8 Nodes NFS mount 16 XDS-jobs 24 processes (2)
134.0 sec	52 sec	56.2 sec	45.6 sec

(1) 900 images, thaumatin, 0.1 deg/image, (2) 900 images, Dectris data


Outlook

- Remote operation using web based MXCuBE. This will be critical during 2018. Involves MAXIV IT systems.
- ISARA sample changer: all functionalities and a lot of testing -> ready to users!
- Remaining equipment to integrate...
- Extend beamline capabilities (energy tuneability, beam stability feedback systems, MESH scan, XRF, minikappa...

Acknowledgement

MX Group

Uwe Mueller Jie Nan Thomas Ursby Johan Unge Roberto Appio Ross Friel

KITS Group

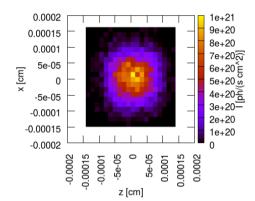
MAX IV

1.5 Ge

Darren Spruce Mikel Eguiraun Fredrik Bolmsten Antonio Milán-Otero Artur Barczyk Zdenek Matej

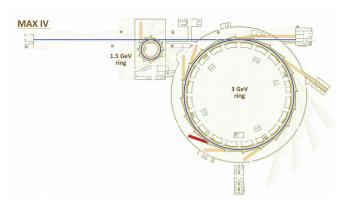
User Office

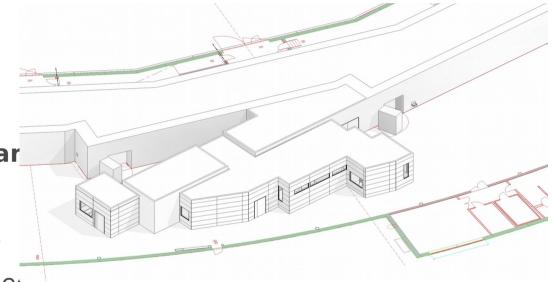
Marjolein Thunnissen


ESRF

Matias Guijarro Marcus Oscarsson Daniele De Sanctis Antonia Beteva

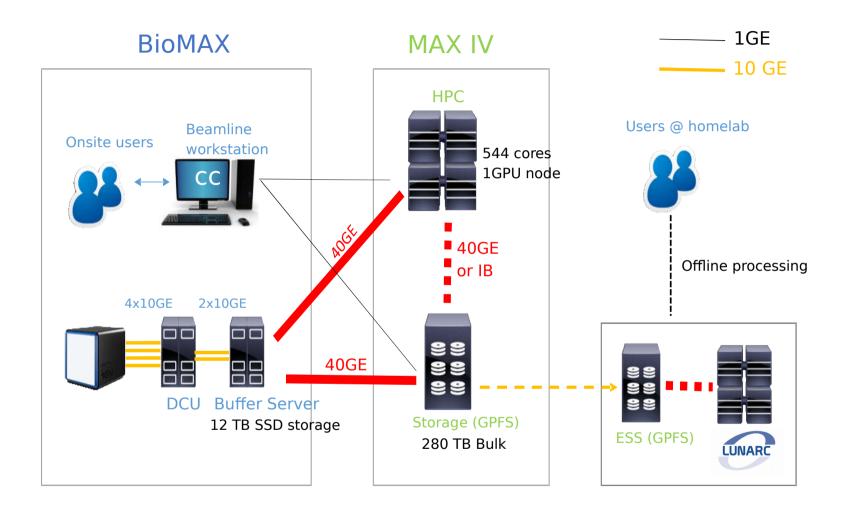
MicroMAX


Thomas Ursby: email: thomas.ursby@maxiv.lu.se



Plans for the second MX bear

- Microfocus beamline
- **1 x 0.7** μm² beam at sample
- Photon flux 10¹³ 10¹⁵ phot/sec
- Traditional setup (goniometry, sample environment)
- Exploratory setup (serial crystallography, fixed target single shot)
- Optimal source for most demanding projects (large complexes, membrane proteins)


Status: funded by Novo Nordisk Foundation

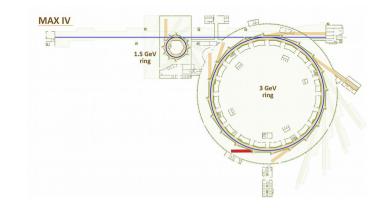
BioMAX - IT Infrastructure

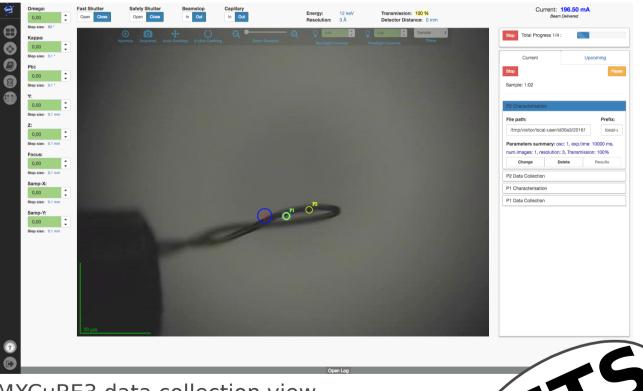
Data reduction and performance

- Automatic processing
 - Fast_dp
 - autoPROC
 - Biomax_pipeline

		J E Go res, CPU E		5-	1 5)LS - 4 nqde cores, E5-269 @2.70 GHz)
Time*	53s	36s	136s	120 s	76.6 s

EIGER_16M_Nov2015.tar.bz2, 900 images in 9 containers, 0.1 osc, from Dectris website

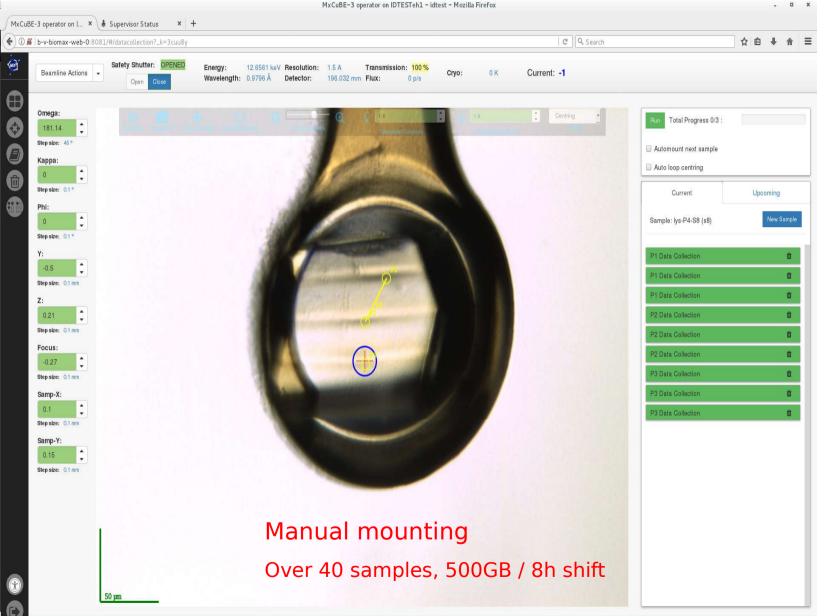

Run XDS with SLURM on HPC


https://github.com/JieNanMAXIV/xds_slurm

MXCuBE3

- Current Status, major features
 - Sample Centering
 - Standard Oscillation
 - Characterization
 - Helical Scan
 - Sample Changer
 - Mesh Scan
- Todo
 - Stability maturation
 - XRF, XANES
- Advantage Joint collaboration with ESRF
- Challenges

Integration with of various hardware, software, Software stability and userfriendliness



MXCuBE3 data collection view

MAXIV

MXCuBE3 at **BioMAX**

Main features

- Sample Video
 - 3 click Centering
 - 2D Centring
 - Auto-Loop Centri
- MD3 controls
 - Motors
 - Zoom
 - Light
 - phase
- Data Collection
 - Standard collecti
 - Characterization
 - Helical Scan
- Processing
 - Launched on HPC
- Queue

