
GL

A hitchhikers guide to MXCuBE

development
-

a discussion starter

Rasmus Fogh,
Global Phasing

MXCuBE meeting. Diamond, 1 February 2018

GL

• Introduction

• Part 1: Code

– Repositories

– Installation and dependencies

– Modularity

• Part 2: Collaboration

– Versions and code flow

– Refactoring

– Testing GL

Contents

GL

Why this talk?

• Starting point for discussion

– Where are we?

– Where do we want to be?

– What should we do to get there?

– What can we do and what should we let drop?

• GΦL has resources to contribute

– How best to employ them?

GL

MXCuBE collaboration

• Many dispersed groups

– Who are both users and developers

– No release to external parties

• Everybody work to their own beamline

– You need a beamline for proper testing

• Different hardware, different projects –

different versions

• Intense time pressure

GL

Does Sir want his tea now,
or does Sir prefer to wait

till it is ready?

At the end of a shut-down:

GL

• Introduction

• Part 1: Code

– Repositories

– Installation and dependencies

– Modularity

• Part 2: Collaboration

– Versions and code flow

– Refactoring

– Testing GL

Contents

GL

Repositories
• Two active user interfaces (web and Qt4)

• Application combined from several
repositories:
UI, HardwareRepository, …

– NOT a problem,

– as long as it is clear what goes where

• We need one more repository:

– Developing with submodules is clumsy

– Separate submodules-only ‘Release’ repository.

– Use to combine different repositories
into a release

GL

Installation system

• No single-step installer

• No up-to-date dependency list

• It works on the development machine, but …

• Sort out your own dependencies

• Single-step installer for easy setup

– With docker to test on a standard OS version

• Matias has a proposal (?)

GL

Modules with clear interfaces

• Good practice

– necessary for multi-branch/site coding

• We need functions that

– Do all you need

– Are clearly defined

– Have the same effect in all branches/sites

– A lot already done: Abstract and Mockup classes

• Respect the interface

– Implementation details in private functions

• Matias has a proposal (?)

GL

Example: moving motors

• Some classes have moveMotors()

• Others have move_motors()

• Some have both – what you gonna call?

• move_motors(motor_positions)

does NOT always move the motors to the

input positions

– Moving kappa may change alignment motors

after the fact

– Kappa or phi may not be moved at all (!)

GL

Example: moving more motors
• AbstractMotor:
def move(self, position,

wait=False, timeout=None):

• MD2Motor:
def move(self, absolutePosition,

timeout=None, wait=False):

• SardanaMotor:
def move(self, absolutePosition)

• Resolution:
def move(self, pos, wait=False)

• What you gonna call?

GL

• Introduction

• Part 1: Code

– Repositories

– Installation and dependencies

– Modularity

• Part 2: Collaboration

– Versions and code flow

– Refactoring

– Testing GL

Contents

GL

Current versions

Lab UI HwObj
Future

UI
future
HwObj

Change
date

MaxIV web/master 2.2 web/master master? TBD

EMBL-HH Qt4/master master Qt4/master master n/a

ESRF Qt3/2.1 2.1 web/master master? Q1 2018

SOLEIL PX1 Qt3/2.1 2.1 Qt4 master? Q1 2018

SOLEIL PX2 Qt3/2.1 2.1 web master? Q1 2018

BESSY Qt4/2.2 2.2 Qt5?? master? Q1 2018

DESY P11 Qt4/master master Qt5?? ??

ALBA Qt4/master master n/a

Elettra web/master 2.2 (Submodule)

LNLS-Brasil Qt4/2.2 2.2 Qt4/master ongoing

GL

Current status - master

Master

Hamburg, Grenoble, and Lund

work closely together,

test continuously,

and upgrade to newest version

GL

Current status - overall

Master

Side

branches

Each site programs for

– and tests on –

their own beamline

GL

Hard to upgrade

Master

Side

branches

Which commit is

- Consistent?

- Tested?

- Going to be supported?

How much adaption is needed?

GL

Hard to contribute

Master

Side

branches

• You cannot test without a beamline

• Additions – and bugs –

go right into production

• Other, busy, people have to test for you

GL

Hard to synchronise

Master

Side

branches

• Your changes need to go to several places

that you do not have running locally

• If not synchronised you will lose them

on upgrade

GL

Multiple, divergent branches
• A single shared release would be ideal

– But would require all sites to agree and move in
tandem

– Is that realistic?

• The greater the divergences, the harder any
collaboration

• All the nifty Git workflows assume
a single active, released branch

• All solutions require extra work

GL

Solution: Releases
• All production code comes from a release

– No development branch in production

– Releases are supported

• Code starts in development branch

– is tested (again) on move to master release
branch

• Older releases become side branches,
if supported

• Each release is managed by the beamline
teams that use the release

GL

Workflow proposal

Develop

2.4 2.5 Current release

GL

Leading edge release

• Current release can be gradually updated in

master branch

• All changes are synced with development

branch

• Releases are tagged when other sites

upgrade

• Responsible sites help with merging and

testing of contributions

GL

Side branch releases

• Changes and additions must be synced

to development branch

– otherwise you lose them next time you update

• All code (including config) must be checked

into git for people to see

• If you keep your branch ready, updates are

easier (and will get communal support)

• Too old releases lose MXCuBE support (!)

GL

• Introduction

• Part 1: Code

– Repositories

– Installation and dependencies

– Modularity

• Part 2: Collaboration

– Versions and code flow

– Refactoring

– Testing GL

Contents

GL

Refactoring
• snake_case v. CamelCase

• Python 3 support
– Python 2 comes off support in 2020

• Code duplication

• Standard naming conventions
– It is Obj.name? Obj.name()?

Obj.get_name()? Obj.getName()?

• Functions changing content of input collections
– E.g. {string:value} {MotorObj:value}

• …

GL

Practical example

• I tried to fix some problems

– Stop objects from exposing internal collections

– Remove mixed tab/space indentation from code

– Both count as bugs (!)

• The combined commit changed 115 files

• Pull request rejected

GL

So, what is the problem?
• Any change, however small,

might break working code
– Yes. Serious problem. Needs agreed procedures.

• Too much work to read through and accept
– Well, OK.

• Hard to compare old and new files by diff
when there are so many changes
– Well, OK.

• ‘Breaks code history’
– How so? Git preserves the history perfectly!

GL

Procedures for changes

• If we want clean, standardised code

– There must be a way to make it happen!

– Commit enough resources to integrate changes

– How should one do it?

• Make this kind of changes just before a release,

to simplify comparisons?

• If we do not have the resources

– We should drop the standards

– Decide up front which things will get done

- and which things will not

GL

• Introduction

• Part 1: Code

– Repositories

– Installation and dependencies

– Modularity

• Part 2: Collaboration

– Versions and code flow

– Refactoring

– Testing GL

Contents

GL

Unit tests

• Test each module function by function

• Easy to run, useful to catch errors as you go

• It is not that bad to set up

• Serves to define specification / interface

– This is not a neutral activity!

• Fit well with modules and abstract classes

– After code has been modularised?

GL

System tests

• Slow – to be done when making a release

• Start the program and run each major

functionality

• Use both mock and beamline (if you have one)

– Collect emulation can maybe help?

• Make an agreed list of tests, so other people can

do it too.

• If you see an error, FIX IT!

GL

Acknowledgements

All of you in MXCuBE

who patiently answered my questions

GL

END

GL

