Implementing New Methods in MXCuBE

Martin Savko savko@synchrotron-soleil.fr

Joint ISPyB and MXCuBE developers meeting at Diamond Light Source

February 1st 2018

Outline

- Purpose of a Graphical User Interfaces
- Native MXCuBE experimental methods
- Motivation for extended catalog of methods
- Implementing a method
 - Choosing between a native method and an external workflow
 - Third option
 - Is there a right way ?
- Beyond MX
 - Alignment of beamline components
 - Beam characterisation
 - 3D sample characterisation (Optical and X-ray tomography)

Purpose of a graphical user interface

- Streamlining use of a beamline
- Exploring sample
- Defining experiment
- Presenting results

Native methods of MXCuBE

- Scan
 - position, orientation and a rotation axis
 - scan_range, scan_start_angle, angle_per_frame, transmission, photon_energy, resolution
- Characterisation
 - axes, wedge_range, scan_start_angles, angle_per_frame ...
 - collect followed by inspection or automated analysis
- Helical scan
 - scan parameters + translation vector
- Fluorescence spectrum
 - photon_energy, count_time
- Energy scan
 - element, edge, scan_range, sampling rate

Native methods

- Scan
 - position, orientation and a rotation axis
 - scan_range, scan_start_angle, angle_per_frame, transmission, photon_energy, resolution
- Characterisation
 - axes, wedge_range, scan_start_angles, angle_per_frame ...
 - collect followed by inspection or automated analysis
- Helical scan
 - scan parameters + translation vector
- Fluorescence spectrum
 - photon_energy, count_time
- Energy scan
 - element, edge, scan_range, sampling rate
- Optical alignment
 - 3+orientations manual or automated(circular model)

Advanced methods

- Mesh scan (grid, raster, area mapper...)
 - Usually a rectangular region -- vertical and horizontal dimensions, horizontal and vertical pitch
 - photon_energy, transmission (flux), resolution
 - analysis, interpretation ...
- X-ray centring
 - series of mesh scans
 - \circ analysis
- Burn strategy
 - determining rate of radiation damage in a sample
 - radiation damage induced phasing

0 ...

🔋 🗐 🗐 MXCuBE

com-proxima2a@PROXIMA2A State: Ready Diffractometer: Ready Sample changer: - Last collect: OSC : Successful (2018-01-31 03:33:01)

Atom of an execution

- Scan (helical)
 - Any diffraction experiment currently supported by MXCuBE can be mapped to a series of helical scans
 - Translation vector set to zero for standard and characterisation, non-zero for helical, x-ray centring and mesh collection
- If queuing is available, any current experiment outline can be reformulated as a series of scans

Experiment finality

What is the question we are asking ?

Is experiment best characterised by it ? Analysis should be an inherent part of a definition of a method.

Experiment is really defined by the analysis.

New features for characterisation method

- Fine sliced wedges instead of single images
- Combining x-ray centring with characterisation
 - Helical scan orthogonal to the rotational axis during wedge measurement
- Strategy + Sample shape determination + Alignment (offsets)

List of available methods

• Scan, Characterisation, Helical Scan, X-ray centring, Mesh, SSX, MAD, Burn, Interleaved, Energy scan, Tomography, XRF spectrum, N-click optical alignment, Sample optical segmentation, Detector pixel health analysis

Hierarchy of available methods

- Experiment
 - Xray
 - Diffraction
 - Scan,
 - Characterisation, Burn, MAD, Interleaved, detector pixel health analysis
 - Helical Scan
 - Helical, X-ray centring, Mesh, SSX
 - Fluorescence
 - Energy scan, XRF spectrum
 - Absorption
 - Tomography
 - Intensity
 - Flux measurement, Slits alignment, Monochromator tuning
 - Optical
 - N-click centring, Sample segmentation

Implementing a method

- Declare necessary equipment and methods and procedures for a class of experiments
 - inherit from AbstractCollect -- diffraction based experiments (Scan, Characterisation, Helical, Interleaved experiments)
 - Can be used for Energy scan, fluorescence spectrum and optical alignment as well ?
- queue_entry
 - pre_execute, execute, post_execute
- data_model
- input widget
 - Parameter specification, queue insertion
- Make Collect object aware of it.

Class AbstractCollect(device):

```
...
@abc.abstractmethod
def data_collection_hook(self):
    """
    Descript. :
    """
    pass
```

Class PX2Collect(AbstractCollect):

. . .

```
def data_collection_hook(self):
```

```
if experiment_type == 'OSC':
    name_pattern = template[:-8]
```

```
os = omega_scan(name_pattern,
```

directory,
photon_energy=energy,
transmission=transmission,
resolution=resolution,
simulation=True)

os.execute()

Supported methods

- 1. from omega_scan import omega_scan
- 2. from inverse_scan import inverse_scan
- 3. from reference_images import reference_images
- 4. from helical_scan import helical_scan
- 5. from fluorescence_spectrum import fluorescence_spectrum
- 6. from energy_scan import energy_scan
- 7. from xray_centring import xray_centring
- 8. from raster_scan import raster_scan
- 9. from nested_helical_acquisition import nested_helical_acquisition
- 10. from tomography import tomography
- 11. from film import film

Beyond MX experiment control in MXCuBE

- Using MXCuBE framework as a GUI for beamline characterisation and optimisation
 - alignment of slits, apertures and collimators
 - undulator tuning curves
 - monochromator alignment
 - precise beam shape and flux determination
 - determination of beam center on the detector (function of focussing mode, energy, distance)
 - detector pixels health verification
- https://github.com/MartinSavko/experimental_methods

Supported methods

- 1. from omega_scan import omega_scan
- 2. from inverse_scan import inverse_scan
- 3. from reference_images import reference_images
- 4. from helical_scan import helical_scan
- 5. from fluorescence_spectrum import fluorescence_spectrum
- 6. from energy_scan import energy_scan
- 7. from xray_centring import xray_centring
- 8. from raster_scan import raster_scan
- 9. from nested_helical_acquisition import nested_helical_acquisition
- 10. from tomography import tomography
- 11. from film import film

Additional methods

- 1. from omega_scan import beamcenter_calibration
- 2. from monochromator_scan import monochromator_scan
- 3. from fast_shutter_scan import fast_shutter_scan
- 4. from monochromator_pitch_scan import monochromator_pitch_scan

Advantages

- Possible to test from command line (evaluation of GUI overhead in execution)
- Easier debugging
- Command line interface for every method
- Complexity encapsulation
- Full control of the execution at the inner most level of the procedure
- Full awareness of the finality and any parameter of the experiment at any time

Drawbacks

- At the moment the connections to lower level objects are recreated
- Many methdods in AbstractCollect are left unused

More is more

- Sharing experiment protocols via catalog of methods native to MXCuBE
 - Benefiting from shared knowledge
- Sharing analysis protocols as well (ideally inherent to the method definition)
 - Even more useful
- Society of experimental methods flowering in MXCuBE ecosystem
 - Many levels of complexity -- from slit scans to multisweep interleaved experiments

Acknowledgements

- Leo Chavas
- Bill Shepard
- Gavin Fox
- Damien Jeangerard
- Patrick Gourhant
- Tatiana Isabet
- Pierre Legrand
- Serena Sirigu
- Andrew Thompson

- Bixente Rey
- Olof Svensson
- Laurent Gadea
- Enrico Stura (CEA)