The Abstract Beamline Interface in practice

Peter Keller Global Phasing Ltd.

DESY, June 2016

Overview

- Background
- DLS-123
- Third-party protocols: the transferable workflow approach
- Changing priorities
- Calibration

Challenges posed by the DLS-I23 beamline

- Multiple orientations
 - Required by detector geometry
- Moving shadows
 - Cannot be realistically avoided
- Interleaving
 - Especially important for longer wavelengths
- Collisions

Particularly severe at I23, but can affect any beamline DESY, June 2016

Driving a beamline as a third party

Workflow with beamline

Workflow ↔ Beamline communication (1)

- Transferability is paramount
- Beamline-agnostic vocabulary
 - Restrict scope to data relevant to strategy calculation and data processing
- Connect to the Beamline Control System
 - No direct communication with beamline motors/devices
 - Use a communication technology that is supported by the BCS

Workflow ↔ Beamline communication (2)

- Abstract Beamline Interface
 - Definition of data exchanged between workflow and beamline
 - The current version was published on GitHub in November 2014
 - Originally proposed to the MXCuBE collaboration in June 2012
- Messaging protocol/technology:
- DLS/GDA: Native Java serialisation of object graphs with JMS (Java Messaging Service) and Apache ActiveMQ
 Future MXCuBE: XML-RPC (probably using Apache XML-RPC on the workflow side). Interaction with MXCuBE3
 GUI: TBD.

Changing priorities (1)

- There have been delays in delivery and commissioning of some of the bespoke DLS-I23 instrumentation
- Decision: change focus to DLS-I04
 - a tunable, variable/micro focus beamline that is more conventional than I23:
 - Wavelength range: 0.71Å 2.07Å
 - Mini-kappa goniostat
 - Pilatus 6M detector

Changing priorities (2)

- DLS-I04 (unlike I23) is fully operational; this brings other issues forward:
 - technical: requirement for calibration data
 - hardware: real-world behaviour of the instrumentation
 - scientific: strategy determination for non-I23 hardware
 - software: readiness of workflow and Beamline Control
 System.
- Addressing these issues will help with:
 - deployment at non-DLS beamlines
 - application to strategies other than the phasing experiments that I23 was designed for

Beamline calibration

- Calculating and executing advanced strategies requires extensive, accurate beamline calibration data
 - Not available from standard beamline procedures
- The original ideas about driving MX experiments are being extended to calibration procedures:
 - translational (centring stage) calibration
 - optical
 - goniostat rotation axis and detector calibration
 - by diffraction

DESY, June 2016

Driving a beamline as a third party

Workflow-driven calibration

- Aimed at beamline staff rather than users
- GΦL can provide the procedures that will produce the calibration data that GΦL applications require:
 - no need to "scavenge" existing data that may not be sufficient or appropriate
 - like MX experimental workflows, will be transferable to other beamlines
 - consistent, and of known provenance,
 - e.g. no surprise inconsistencies between MOSFLM and XDSrefined calibration results

Translational calibration (1)

- Centring of the tip of a pin at many values of (ω,κ,ϕ)
 - optical procedure using OAV: no beam needed
- The initial attempt to calibrate the centring stage using* existing facilities on DLS-I04 was slow and painful
 - hundreds of data points needed
 - 27 data points per hour collected
 - * "subverting" might be a better description

Translational calibration (2)

- We developed a workflow-based approach that enabled:
 - speed-up to 110 data points per hour
 - fully automatable by DLS, in principle
- Repeated by DLS staff without GΦL staff present
- Allowed verification of stratcal's functionality for anticipating re-centring settings between orientations

Centring stage calibration workflow

Centring stage calibration: Abstract Beamline Interface (before)

Centring stage calibration: Abstract Beamline Interface (after)

GΦL

DESY, June 2016

Goniostat and detector calibration

- Diffraction-based procedure
 - collect data according to a particular protocol from a sample with specific characteristics
 - process images with the GΦL-developed XCALIBRA application
- In the future, will also be invokable from calibration workflows
 - no significant operational speed-up expected through workflow control in this case
 - essential to ensure consistency and provenance of the results, and control over processing

People involved

- GΦL: Gérard Bricogne, Claus Flensburg, Wlodek Paciorek, Clemens Vonrhein
- DLS: Jonathan Blakes, Ralf Flaig, David Hall, Pierpaolo Romano, Armin Wagner, Graeme Winter